PaddleOCR/test_tipc/supplementary/loss.py

129 lines
4.1 KiB
Python

import paddle
import paddle.nn.functional as F
class Loss(object):
"""
Loss
"""
def __init__(self, class_dim=1000, epsilon=None):
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
self._class_dim = class_dim
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
self._epsilon = epsilon
self._label_smoothing = True
else:
self._epsilon = None
self._label_smoothing = False
def _labelsmoothing(self, target):
if target.shape[-1] != self._class_dim:
one_hot_target = F.one_hot(target, self._class_dim)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self._epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
return soft_target
def _crossentropy(self, input, target, use_pure_fp16=False):
if self._label_smoothing:
target = self._labelsmoothing(target)
input = -F.log_softmax(input, axis=-1)
cost = paddle.sum(target * input, axis=-1)
else:
cost = F.cross_entropy(input=input, label=target)
if use_pure_fp16:
avg_cost = paddle.sum(cost)
else:
avg_cost = paddle.mean(cost)
return avg_cost
def __call__(self, input, target):
return self._crossentropy(input, target)
def build_loss(config, epsilon=None):
class_dim = config['class_dim']
loss_func = Loss(class_dim=class_dim, epsilon=epsilon)
return loss_func
class LossDistill(Loss):
def __init__(self, model_name_list, class_dim=1000, epsilon=None):
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
self._class_dim = class_dim
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
self._epsilon = epsilon
self._label_smoothing = True
else:
self._epsilon = None
self._label_smoothing = False
self.model_name_list = model_name_list
assert len(self.model_name_list) > 1, "error"
def __call__(self, input, target):
losses = {}
for k in self.model_name_list:
inp = input[k]
losses[k] = self._crossentropy(inp, target)
return losses
class KLJSLoss(object):
def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS'
], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean"):
p1 = F.softmax(p1, axis=-1)
p2 = F.softmax(p2, axis=-1)
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
if self.mode.lower() == "js":
loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5
if reduction == "mean":
loss = paddle.mean(loss)
elif reduction == "none" or reduction is None:
return loss
else:
loss = paddle.sum(loss)
return loss
class DMLLoss(object):
def __init__(self, model_name_pairs, mode='js'):
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
self.kljs_loss = KLJSLoss(mode=mode)
def _check_model_name_pairs(self, model_name_pairs):
if not isinstance(model_name_pairs, list):
return []
elif isinstance(model_name_pairs[0], list) and isinstance(
model_name_pairs[0][0], str):
return model_name_pairs
else:
return [model_name_pairs]
def __call__(self, predicts, target=None):
loss_dict = dict()
for pairs in self.model_name_pairs:
p1 = predicts[pairs[0]]
p2 = predicts[pairs[1]]
loss_dict[pairs[0] + "_" + pairs[1]] = self.kljs_loss(p1, p2)
return loss_dict
# def build_distill_loss(config, epsilon=None):
# class_dim = config['class_dim']
# loss = LossDistill(model_name_list=['student', 'student1'], )
# return loss_func