129 lines
4.1 KiB
Python
129 lines
4.1 KiB
Python
import paddle
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
class Loss(object):
|
|
"""
|
|
Loss
|
|
"""
|
|
|
|
def __init__(self, class_dim=1000, epsilon=None):
|
|
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
|
|
self._class_dim = class_dim
|
|
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
|
|
self._epsilon = epsilon
|
|
self._label_smoothing = True
|
|
else:
|
|
self._epsilon = None
|
|
self._label_smoothing = False
|
|
|
|
def _labelsmoothing(self, target):
|
|
if target.shape[-1] != self._class_dim:
|
|
one_hot_target = F.one_hot(target, self._class_dim)
|
|
else:
|
|
one_hot_target = target
|
|
soft_target = F.label_smooth(one_hot_target, epsilon=self._epsilon)
|
|
soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
|
|
return soft_target
|
|
|
|
def _crossentropy(self, input, target, use_pure_fp16=False):
|
|
if self._label_smoothing:
|
|
target = self._labelsmoothing(target)
|
|
input = -F.log_softmax(input, axis=-1)
|
|
cost = paddle.sum(target * input, axis=-1)
|
|
else:
|
|
cost = F.cross_entropy(input=input, label=target)
|
|
if use_pure_fp16:
|
|
avg_cost = paddle.sum(cost)
|
|
else:
|
|
avg_cost = paddle.mean(cost)
|
|
return avg_cost
|
|
|
|
def __call__(self, input, target):
|
|
return self._crossentropy(input, target)
|
|
|
|
|
|
def build_loss(config, epsilon=None):
|
|
class_dim = config['class_dim']
|
|
loss_func = Loss(class_dim=class_dim, epsilon=epsilon)
|
|
return loss_func
|
|
|
|
|
|
class LossDistill(Loss):
|
|
def __init__(self, model_name_list, class_dim=1000, epsilon=None):
|
|
assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
|
|
self._class_dim = class_dim
|
|
if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
|
|
self._epsilon = epsilon
|
|
self._label_smoothing = True
|
|
else:
|
|
self._epsilon = None
|
|
self._label_smoothing = False
|
|
|
|
self.model_name_list = model_name_list
|
|
assert len(self.model_name_list) > 1, "error"
|
|
|
|
def __call__(self, input, target):
|
|
losses = {}
|
|
for k in self.model_name_list:
|
|
inp = input[k]
|
|
losses[k] = self._crossentropy(inp, target)
|
|
return losses
|
|
|
|
|
|
class KLJSLoss(object):
|
|
def __init__(self, mode='kl'):
|
|
assert mode in ['kl', 'js', 'KL', 'JS'
|
|
], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
|
|
self.mode = mode
|
|
|
|
def __call__(self, p1, p2, reduction="mean"):
|
|
p1 = F.softmax(p1, axis=-1)
|
|
p2 = F.softmax(p2, axis=-1)
|
|
|
|
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
|
|
|
|
if self.mode.lower() == "js":
|
|
loss += paddle.multiply(
|
|
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
|
|
loss *= 0.5
|
|
if reduction == "mean":
|
|
loss = paddle.mean(loss)
|
|
elif reduction == "none" or reduction is None:
|
|
return loss
|
|
else:
|
|
loss = paddle.sum(loss)
|
|
return loss
|
|
|
|
|
|
class DMLLoss(object):
|
|
def __init__(self, model_name_pairs, mode='js'):
|
|
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.kljs_loss = KLJSLoss(mode=mode)
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def __call__(self, predicts, target=None):
|
|
loss_dict = dict()
|
|
for pairs in self.model_name_pairs:
|
|
p1 = predicts[pairs[0]]
|
|
p2 = predicts[pairs[1]]
|
|
|
|
loss_dict[pairs[0] + "_" + pairs[1]] = self.kljs_loss(p1, p2)
|
|
|
|
return loss_dict
|
|
|
|
|
|
# def build_distill_loss(config, epsilon=None):
|
|
# class_dim = config['class_dim']
|
|
# loss = LossDistill(model_name_list=['student', 'student1'], )
|
|
# return loss_func
|