203 lines
7.3 KiB
Python
203 lines
7.3 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import time
|
|
import json
|
|
|
|
import tools.infer.utility as utility
|
|
from ppocr.data import create_operators, transform
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.utils.logging import get_logger
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read
|
|
from ppocr.utils.visual import draw_rectangle
|
|
from ppstructure.utility import parse_args
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
def build_pre_process_list(args):
|
|
resize_op = {'ResizeTableImage': {'max_len': args.table_max_len, }}
|
|
pad_op = {
|
|
'PaddingTableImage': {
|
|
'size': [args.table_max_len, args.table_max_len]
|
|
}
|
|
}
|
|
normalize_op = {
|
|
'NormalizeImage': {
|
|
'std': [0.229, 0.224, 0.225] if
|
|
args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5],
|
|
'mean': [0.485, 0.456, 0.406] if
|
|
args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5],
|
|
'scale': '1./255.',
|
|
'order': 'hwc'
|
|
}
|
|
}
|
|
to_chw_op = {'ToCHWImage': None}
|
|
keep_keys_op = {'KeepKeys': {'keep_keys': ['image', 'shape']}}
|
|
if args.table_algorithm not in ['TableMaster']:
|
|
pre_process_list = [
|
|
resize_op, normalize_op, pad_op, to_chw_op, keep_keys_op
|
|
]
|
|
else:
|
|
pre_process_list = [
|
|
resize_op, pad_op, normalize_op, to_chw_op, keep_keys_op
|
|
]
|
|
return pre_process_list
|
|
|
|
|
|
class TableStructurer(object):
|
|
def __init__(self, args):
|
|
self.args = args
|
|
self.use_onnx = args.use_onnx
|
|
pre_process_list = build_pre_process_list(args)
|
|
if args.table_algorithm not in ['TableMaster']:
|
|
postprocess_params = {
|
|
'name': 'TableLabelDecode',
|
|
"character_dict_path": args.table_char_dict_path,
|
|
'merge_no_span_structure': args.merge_no_span_structure
|
|
}
|
|
else:
|
|
postprocess_params = {
|
|
'name': 'TableMasterLabelDecode',
|
|
"character_dict_path": args.table_char_dict_path,
|
|
'box_shape': 'pad',
|
|
'merge_no_span_structure': args.merge_no_span_structure
|
|
}
|
|
|
|
self.preprocess_op = create_operators(pre_process_list)
|
|
self.postprocess_op = build_post_process(postprocess_params)
|
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
|
utility.create_predictor(args, 'table', logger)
|
|
|
|
if args.benchmark:
|
|
import auto_log
|
|
pid = os.getpid()
|
|
gpu_id = utility.get_infer_gpuid()
|
|
self.autolog = auto_log.AutoLogger(
|
|
model_name="table",
|
|
model_precision=args.precision,
|
|
batch_size=1,
|
|
data_shape="dynamic",
|
|
save_path=None, #args.save_log_path,
|
|
inference_config=self.config,
|
|
pids=pid,
|
|
process_name=None,
|
|
gpu_ids=gpu_id if args.use_gpu else None,
|
|
time_keys=[
|
|
'preprocess_time', 'inference_time', 'postprocess_time'
|
|
],
|
|
warmup=0,
|
|
logger=logger)
|
|
|
|
def __call__(self, img):
|
|
starttime = time.time()
|
|
if self.args.benchmark:
|
|
self.autolog.times.start()
|
|
|
|
ori_im = img.copy()
|
|
data = {'image': img}
|
|
data = transform(data, self.preprocess_op)
|
|
img = data[0]
|
|
if img is None:
|
|
return None, 0
|
|
img = np.expand_dims(img, axis=0)
|
|
img = img.copy()
|
|
if self.args.benchmark:
|
|
self.autolog.times.stamp()
|
|
if self.use_onnx:
|
|
input_dict = {}
|
|
input_dict[self.input_tensor.name] = img
|
|
outputs = self.predictor.run(self.output_tensors, input_dict)
|
|
else:
|
|
self.input_tensor.copy_from_cpu(img)
|
|
self.predictor.run()
|
|
outputs = []
|
|
for output_tensor in self.output_tensors:
|
|
output = output_tensor.copy_to_cpu()
|
|
outputs.append(output)
|
|
if self.args.benchmark:
|
|
self.autolog.times.stamp()
|
|
|
|
preds = {}
|
|
preds['structure_probs'] = outputs[1]
|
|
preds['loc_preds'] = outputs[0]
|
|
|
|
shape_list = np.expand_dims(data[-1], axis=0)
|
|
post_result = self.postprocess_op(preds, [shape_list])
|
|
|
|
structure_str_list = post_result['structure_batch_list'][0]
|
|
bbox_list = post_result['bbox_batch_list'][0]
|
|
structure_str_list = structure_str_list[0]
|
|
structure_str_list = [
|
|
'<html>', '<body>', '<table>'
|
|
] + structure_str_list + ['</table>', '</body>', '</html>']
|
|
elapse = time.time() - starttime
|
|
if self.args.benchmark:
|
|
self.autolog.times.end(stamp=True)
|
|
return (structure_str_list, bbox_list), elapse
|
|
|
|
|
|
def main(args):
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
table_structurer = TableStructurer(args)
|
|
count = 0
|
|
total_time = 0
|
|
os.makedirs(args.output, exist_ok=True)
|
|
with open(
|
|
os.path.join(args.output, 'infer.txt'), mode='w',
|
|
encoding='utf-8') as f_w:
|
|
for image_file in image_file_list:
|
|
img, flag, _ = check_and_read(image_file)
|
|
if not flag:
|
|
img = cv2.imread(image_file)
|
|
if img is None:
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
continue
|
|
structure_res, elapse = table_structurer(img)
|
|
structure_str_list, bbox_list = structure_res
|
|
bbox_list_str = json.dumps(bbox_list.tolist())
|
|
logger.info("result: {}, {}".format(structure_str_list,
|
|
bbox_list_str))
|
|
f_w.write("result: {}, {}\n".format(structure_str_list,
|
|
bbox_list_str))
|
|
|
|
if len(bbox_list) > 0 and len(bbox_list[0]) == 4:
|
|
img = draw_rectangle(image_file, bbox_list)
|
|
else:
|
|
img = utility.draw_boxes(img, bbox_list)
|
|
img_save_path = os.path.join(args.output,
|
|
os.path.basename(image_file))
|
|
cv2.imwrite(img_save_path, img)
|
|
logger.info("save vis result to {}".format(img_save_path))
|
|
if count > 0:
|
|
total_time += elapse
|
|
count += 1
|
|
logger.info("Predict time of {}: {}".format(image_file, elapse))
|
|
if args.benchmark:
|
|
table_structurer.autolog.report()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(parse_args())
|