PaddleOCR/tools/end2end/readme.md

64 lines
2.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 简介
`tools/end2end`目录下存放了文本检测+文本识别pipeline串联预测的指标评测代码以及可视化工具。本节介绍文本检测+文本识别的端对端指标评估方式。
## 端对端评测步骤
**步骤一:**
运行`tools/infer/predict_system.py`,得到保存的结果:
```
python3 tools/infer/predict_system.py --det_model_dir=./ch_PP-OCRv2_det_infer/ --rec_model_dir=./ch_PP-OCRv2_rec_infer/ --image_dir=./datasets/img_dir/ --draw_img_save_dir=./ch_PP-OCRv2_results/ --is_visualize=True
```
文本检测识别可视化图默认保存在`./ch_PP-OCRv2_results/`目录下,预测结果默认保存在`./ch_PP-OCRv2_results/system_results.txt`中,格式如下:
```
all-sum-510/00224225.jpg [{"transcription": "超赞", "points": [[8.0, 48.0], [157.0, 44.0], [159.0, 115.0], [10.0, 119.0]], "score": "0.99396634"}, {"transcription": "中", "points": [[202.0, 152.0], [230.0, 152.0], [230.0, 163.0], [202.0, 163.0]], "score": "0.09310734"}, {"transcription": "58.0m", "points": [[196.0, 192.0], [444.0, 192.0], [444.0, 240.0], [196.0, 240.0]], "score": "0.44041982"}, {"transcription": "汽配", "points": [[55.0, 263.0], [95.0, 263.0], [95.0, 281.0], [55.0, 281.0]], "score": "0.9986651"}, {"transcription": "成总店", "points": [[120.0, 262.0], [176.0, 262.0], [176.0, 283.0], [120.0, 283.0]], "score": "0.9929402"}, {"transcription": "K", "points": [[237.0, 286.0], [311.0, 286.0], [311.0, 345.0], [237.0, 345.0]], "score": "0.6074794"}, {"transcription": "88-8", "points": [[203.0, 405.0], [477.0, 414.0], [475.0, 459.0], [201.0, 450.0]], "score": "0.7106863"}]
```
**步骤二:**
将步骤一保存的数据转换为端对端评测需要的数据格式:
修改 `tools/end2end/convert_ppocr_label.py`中的代码convert_label函数中设置输入标签路径Mode保存标签路径等对预测数据的GTlabel和预测结果的label格式进行转换。
```
python3 tools/end2end/convert_ppocr_label.py --mode=gt --label_path=path/to/label_txt --save_folder=save_gt_label
python3 tools/end2end/convert_ppocr_label.py --mode=pred --label_path=path/to/pred_txt --save_folder=save_PPOCRV2_infer
```
得到如下结果:
```
├── ./save_gt_label/
├── ./save_PPOCRV2_infer/
```
**步骤三:**
执行端对端评测,运行`tools/eval_end2end.py`计算端对端指标,运行方式如下:
```
python3 tools/eval_end2end.py "gt_label_dir" "predict_label_dir"
```
比如:
```
python3 tools/eval_end2end.py ./save_gt_label/ ./save_PPOCRV2_infer/
```
将得到如下结果fmeasure为主要关注的指标
```
hit, dt_count, gt_count 1557 2693 3283
character_acc: 61.77%
avg_edit_dist_field: 3.08
avg_edit_dist_img: 51.82
precision: 57.82%
recall: 47.43%
fmeasure: 52.11%
```