mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
* add ppformulanet * rename loss * modify doc * add export code * modify yaml for global ref
1586 lines
54 KiB
Python
1586 lines
54 KiB
Python
# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/PaddlePaddle/PaddleClas/blob/2f36cab604e439b59d1a854df34ece3b10d888e3/ppcls/arch/backbone/legendary_models/pp_hgnet_v2.py
|
|
"""
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import math
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.nn import Conv2D, BatchNorm, Linear, BatchNorm2D, MaxPool2D, AvgPool2D
|
|
from paddle.nn.initializer import Uniform
|
|
from paddle.regularizer import L2Decay
|
|
|
|
from typing import Tuple, List, Dict, Union, Callable, Any
|
|
from ppocr.modeling.backbones.rec_donut_swin import DonutSwinModelOutput
|
|
|
|
|
|
class IdentityBasedConv1x1(nn.Conv2D):
|
|
def __init__(self, channels, groups=1):
|
|
super(IdentityBasedConv1x1, self).__init__(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
groups=groups,
|
|
bias_attr=False,
|
|
)
|
|
|
|
assert channels % groups == 0
|
|
input_dim = channels // groups
|
|
id_value = np.zeros((channels, input_dim, 1, 1))
|
|
for i in range(channels):
|
|
id_value[i, i % input_dim, 0, 0] = 1
|
|
self.id_tensor = paddle.to_tensor(id_value)
|
|
self.weight.set_value(paddle.zeros_like(self.weight))
|
|
|
|
def forward(self, input):
|
|
kernel = self.weight + self.id_tensor
|
|
result = F.conv2d(
|
|
input,
|
|
kernel,
|
|
None,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=self._dilation,
|
|
groups=self._groups,
|
|
)
|
|
return result
|
|
|
|
def get_actual_kernel(self):
|
|
return self.weight + self.id_tensor
|
|
|
|
|
|
class BNAndPad(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
pad_pixels,
|
|
num_features,
|
|
epsilon=1e-5,
|
|
momentum=0.1,
|
|
last_conv_bias=None,
|
|
bn=nn.BatchNorm2D,
|
|
):
|
|
super().__init__()
|
|
self.bn = bn(num_features, momentum=momentum, epsilon=epsilon)
|
|
self.pad_pixels = pad_pixels
|
|
self.last_conv_bias = last_conv_bias
|
|
|
|
def forward(self, input):
|
|
output = self.bn(input)
|
|
if self.pad_pixels > 0:
|
|
bias = -self.bn._mean
|
|
if self.last_conv_bias is not None:
|
|
bias += self.last_conv_bias
|
|
pad_values = self.bn.bias + self.bn.weight * (
|
|
bias / paddle.sqrt(self.bn._variance + self.bn._epsilon)
|
|
)
|
|
""" pad """
|
|
# TODO: n,h,w,c format is not supported yet
|
|
n, c, h, w = output.shape
|
|
values = pad_values.reshape([1, -1, 1, 1])
|
|
w_values = values.expand([n, -1, self.pad_pixels, w])
|
|
x = paddle.concat([w_values, output, w_values], axis=2)
|
|
h = h + self.pad_pixels * 2
|
|
h_values = values.expand([n, -1, h, self.pad_pixels])
|
|
x = paddle.concat([h_values, x, h_values], axis=3)
|
|
output = x
|
|
return output
|
|
|
|
@property
|
|
def weight(self):
|
|
return self.bn.weight
|
|
|
|
@property
|
|
def bias(self):
|
|
return self.bn.bias
|
|
|
|
@property
|
|
def _mean(self):
|
|
return self.bn._mean
|
|
|
|
@property
|
|
def _variance(self):
|
|
return self.bn._variance
|
|
|
|
@property
|
|
def _epsilon(self):
|
|
return self.bn._epsilon
|
|
|
|
|
|
def conv_bn(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
padding_mode="zeros",
|
|
):
|
|
conv_layer = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
bias_attr=False,
|
|
padding_mode=padding_mode,
|
|
)
|
|
bn_layer = nn.BatchNorm2D(num_features=out_channels)
|
|
se = nn.Sequential()
|
|
se.add_sublayer("conv", conv_layer)
|
|
se.add_sublayer("bn", bn_layer)
|
|
return se
|
|
|
|
|
|
def transI_fusebn(kernel, bn):
|
|
gamma = bn.weight
|
|
std = (bn._variance + bn._epsilon).sqrt()
|
|
return (
|
|
kernel * ((gamma / std).reshape([-1, 1, 1, 1])),
|
|
bn.bias - bn._mean * gamma / std,
|
|
)
|
|
|
|
|
|
def transII_addbranch(kernels, biases):
|
|
return sum(kernels), sum(biases)
|
|
|
|
|
|
def transIII_1x1_kxk(k1, b1, k2, b2, groups):
|
|
if groups == 1:
|
|
k = F.conv2d(k2, k1.transpose([1, 0, 2, 3]))
|
|
b_hat = (k2 * b1.reshape([1, -1, 1, 1])).sum((1, 2, 3))
|
|
else:
|
|
k_slices = []
|
|
b_slices = []
|
|
k1_T = k1.transpose([1, 0, 2, 3])
|
|
k1_group_width = k1.shape[0] // groups
|
|
k2_group_width = k2.shape[0] // groups
|
|
for g in range(groups):
|
|
k1_T_slice = k1_T[:, g * k1_group_width : (g + 1) * k1_group_width, :, :]
|
|
k2_slice = k2[g * k2_group_width : (g + 1) * k2_group_width, :, :, :]
|
|
k_slices.append(F.conv2d(k2_slice, k1_T_slice))
|
|
b_slices.append(
|
|
(
|
|
k2_slice
|
|
* b1[g * k1_group_width : (g + 1) * k1_group_width].reshape(
|
|
[1, -1, 1, 1]
|
|
)
|
|
).sum((1, 2, 3))
|
|
)
|
|
k, b_hat = transIV_depthconcat(k_slices, b_slices)
|
|
return k, b_hat + b2
|
|
|
|
|
|
def transIV_depthconcat(kernels, biases):
|
|
return paddle.cat(kernels, axis=0), paddle.cat(biases)
|
|
|
|
|
|
def transV_avg(channels, kernel_size, groups):
|
|
input_dim = channels // groups
|
|
k = paddle.zeros((channels, input_dim, kernel_size, kernel_size))
|
|
k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = (
|
|
1.0 / kernel_size**2
|
|
)
|
|
return k
|
|
|
|
|
|
def transVI_multiscale(kernel, target_kernel_size):
|
|
H_pixels_to_pad = (target_kernel_size - kernel.shape[2]) // 2
|
|
W_pixels_to_pad = (target_kernel_size - kernel.shape[3]) // 2
|
|
return F.pad(
|
|
kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad]
|
|
)
|
|
|
|
|
|
class DiverseBranchBlock(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None,
|
|
is_repped=False,
|
|
single_init=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
|
|
padding = (filter_size - 1) // 2
|
|
dilation = 1
|
|
|
|
in_channels = num_channels
|
|
out_channels = num_filters
|
|
kernel_size = filter_size
|
|
internal_channels_1x1_3x3 = None
|
|
nonlinear = act
|
|
|
|
self.is_repped = is_repped
|
|
|
|
if nonlinear is None:
|
|
self.nonlinear = nn.Identity()
|
|
else:
|
|
self.nonlinear = nn.ReLU()
|
|
|
|
self.kernel_size = kernel_size
|
|
self.out_channels = out_channels
|
|
self.groups = groups
|
|
assert padding == kernel_size // 2
|
|
|
|
if is_repped:
|
|
self.dbb_reparam = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
bias_attr=True,
|
|
)
|
|
else:
|
|
self.dbb_origin = conv_bn(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
groups=groups,
|
|
)
|
|
|
|
self.dbb_avg = nn.Sequential()
|
|
if groups < out_channels:
|
|
self.dbb_avg.add_sublayer(
|
|
"conv",
|
|
nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
groups=groups,
|
|
bias_attr=False,
|
|
),
|
|
)
|
|
self.dbb_avg.add_sublayer(
|
|
"bn", BNAndPad(pad_pixels=padding, num_features=out_channels)
|
|
)
|
|
self.dbb_avg.add_sublayer(
|
|
"avg",
|
|
nn.AvgPool2D(kernel_size=kernel_size, stride=stride, padding=0),
|
|
)
|
|
self.dbb_1x1 = conv_bn(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
padding=0,
|
|
groups=groups,
|
|
)
|
|
else:
|
|
self.dbb_avg.add_sublayer(
|
|
"avg",
|
|
nn.AvgPool2D(
|
|
kernel_size=kernel_size, stride=stride, padding=padding
|
|
),
|
|
)
|
|
|
|
self.dbb_avg.add_sublayer("avgbn", nn.BatchNorm2D(out_channels))
|
|
|
|
if internal_channels_1x1_3x3 is None:
|
|
internal_channels_1x1_3x3 = (
|
|
in_channels if groups < out_channels else 2 * in_channels
|
|
) # For mobilenet, it is better to have 2X internal channels
|
|
|
|
self.dbb_1x1_kxk = nn.Sequential()
|
|
if internal_channels_1x1_3x3 == in_channels:
|
|
self.dbb_1x1_kxk.add_sublayer(
|
|
"idconv1", IdentityBasedConv1x1(channels=in_channels, groups=groups)
|
|
)
|
|
else:
|
|
self.dbb_1x1_kxk.add_sublayer(
|
|
"conv1",
|
|
nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=internal_channels_1x1_3x3,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
groups=groups,
|
|
bias_attr=False,
|
|
),
|
|
)
|
|
self.dbb_1x1_kxk.add_sublayer(
|
|
"bn1",
|
|
BNAndPad(pad_pixels=padding, num_features=internal_channels_1x1_3x3),
|
|
)
|
|
self.dbb_1x1_kxk.add_sublayer(
|
|
"conv2",
|
|
nn.Conv2D(
|
|
in_channels=internal_channels_1x1_3x3,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=0,
|
|
groups=groups,
|
|
bias_attr=False,
|
|
),
|
|
)
|
|
self.dbb_1x1_kxk.add_sublayer("bn2", nn.BatchNorm2D(out_channels))
|
|
|
|
# The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases.
|
|
if single_init:
|
|
# Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting.
|
|
self.single_init()
|
|
|
|
def forward(self, inputs):
|
|
if self.is_repped:
|
|
return self.nonlinear(self.dbb_reparam(inputs))
|
|
|
|
out = self.dbb_origin(inputs)
|
|
if hasattr(self, "dbb_1x1"):
|
|
out += self.dbb_1x1(inputs)
|
|
out += self.dbb_avg(inputs)
|
|
out += self.dbb_1x1_kxk(inputs)
|
|
return self.nonlinear(out)
|
|
|
|
def init_gamma(self, gamma_value):
|
|
if hasattr(self, "dbb_origin"):
|
|
paddle.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value)
|
|
if hasattr(self, "dbb_1x1"):
|
|
paddle.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value)
|
|
if hasattr(self, "dbb_avg"):
|
|
paddle.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value)
|
|
if hasattr(self, "dbb_1x1_kxk"):
|
|
paddle.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value)
|
|
|
|
def single_init(self):
|
|
self.init_gamma(0.0)
|
|
if hasattr(self, "dbb_origin"):
|
|
paddle.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)
|
|
|
|
def get_equivalent_kernel_bias(self):
|
|
k_origin, b_origin = transI_fusebn(
|
|
self.dbb_origin.conv.weight, self.dbb_origin.bn
|
|
)
|
|
|
|
if hasattr(self, "dbb_1x1"):
|
|
k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight, self.dbb_1x1.bn)
|
|
k_1x1 = transVI_multiscale(k_1x1, self.kernel_size)
|
|
else:
|
|
k_1x1, b_1x1 = 0, 0
|
|
|
|
if hasattr(self.dbb_1x1_kxk, "idconv1"):
|
|
k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()
|
|
else:
|
|
k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight
|
|
k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(
|
|
k_1x1_kxk_first, self.dbb_1x1_kxk.bn1
|
|
)
|
|
k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(
|
|
self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2
|
|
)
|
|
k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(
|
|
k_1x1_kxk_first,
|
|
b_1x1_kxk_first,
|
|
k_1x1_kxk_second,
|
|
b_1x1_kxk_second,
|
|
groups=self.groups,
|
|
)
|
|
|
|
k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)
|
|
k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg, self.dbb_avg.avgbn)
|
|
if hasattr(self.dbb_avg, "conv"):
|
|
k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(
|
|
self.dbb_avg.conv.weight, self.dbb_avg.bn
|
|
)
|
|
k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(
|
|
k_1x1_avg_first,
|
|
b_1x1_avg_first,
|
|
k_1x1_avg_second,
|
|
b_1x1_avg_second,
|
|
groups=self.groups,
|
|
)
|
|
else:
|
|
k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second
|
|
|
|
return transII_addbranch(
|
|
(k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged),
|
|
(b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged),
|
|
)
|
|
|
|
def re_parameterize(self):
|
|
if self.is_repped:
|
|
return
|
|
|
|
kernel, bias = self.get_equivalent_kernel_bias()
|
|
self.dbb_reparam = nn.Conv2D(
|
|
in_channels=self.dbb_origin.conv._in_channels,
|
|
out_channels=self.dbb_origin.conv._out_channels,
|
|
kernel_size=self.dbb_origin.conv._kernel_size,
|
|
stride=self.dbb_origin.conv._stride,
|
|
padding=self.dbb_origin.conv._padding,
|
|
dilation=self.dbb_origin.conv._dilation,
|
|
groups=self.dbb_origin.conv._groups,
|
|
bias_attr=True,
|
|
)
|
|
|
|
self.dbb_reparam.weight.set_value(kernel)
|
|
self.dbb_reparam.bias.set_value(bias)
|
|
|
|
self.__delattr__("dbb_origin")
|
|
self.__delattr__("dbb_avg")
|
|
if hasattr(self, "dbb_1x1"):
|
|
self.__delattr__("dbb_1x1")
|
|
self.__delattr__("dbb_1x1_kxk")
|
|
self.is_repped = True
|
|
|
|
|
|
class Identity(nn.Layer):
|
|
def __init__(self):
|
|
super(Identity, self).__init__()
|
|
|
|
def forward(self, inputs):
|
|
return inputs
|
|
|
|
|
|
class TheseusLayer(nn.Layer):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__()
|
|
self.res_dict = {}
|
|
self.res_name = self.full_name()
|
|
self.pruner = None
|
|
self.quanter = None
|
|
|
|
self.init_net(*args, **kwargs)
|
|
|
|
def _return_dict_hook(self, layer, input, output):
|
|
res_dict = {"logits": output}
|
|
# 'list' is needed to avoid error raised by popping self.res_dict
|
|
for res_key in list(self.res_dict):
|
|
# clear the res_dict because the forward process may change according to input
|
|
res_dict[res_key] = self.res_dict.pop(res_key)
|
|
return res_dict
|
|
|
|
def init_net(
|
|
self,
|
|
stages_pattern=None,
|
|
return_patterns=None,
|
|
return_stages=None,
|
|
freeze_befor=None,
|
|
stop_after=None,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
# init the output of net
|
|
if return_patterns or return_stages:
|
|
if return_patterns and return_stages:
|
|
msg = f"The 'return_patterns' would be ignored when 'return_stages' is set."
|
|
|
|
return_stages = None
|
|
|
|
if return_stages is True:
|
|
return_patterns = stages_pattern
|
|
|
|
# return_stages is int or bool
|
|
if type(return_stages) is int:
|
|
return_stages = [return_stages]
|
|
if isinstance(return_stages, list):
|
|
if max(return_stages) > len(stages_pattern) or min(return_stages) < 0:
|
|
msg = f"The 'return_stages' set error. Illegal value(s) have been ignored. The stages' pattern list is {stages_pattern}."
|
|
|
|
return_stages = [
|
|
val
|
|
for val in return_stages
|
|
if val >= 0 and val < len(stages_pattern)
|
|
]
|
|
return_patterns = [stages_pattern[i] for i in return_stages]
|
|
|
|
if return_patterns:
|
|
# call update_res function after the __init__ of the object has completed execution, that is, the contructing of layer or model has been completed.
|
|
def update_res_hook(layer, input):
|
|
self.update_res(return_patterns)
|
|
|
|
self.register_forward_pre_hook(update_res_hook)
|
|
|
|
# freeze subnet
|
|
if freeze_befor is not None:
|
|
self.freeze_befor(freeze_befor)
|
|
|
|
# set subnet to Identity
|
|
if stop_after is not None:
|
|
self.stop_after(stop_after)
|
|
|
|
def init_res(self, stages_pattern, return_patterns=None, return_stages=None):
|
|
|
|
if return_patterns and return_stages:
|
|
return_stages = None
|
|
|
|
if return_stages is True:
|
|
return_patterns = stages_pattern
|
|
# return_stages is int or bool
|
|
if type(return_stages) is int:
|
|
return_stages = [return_stages]
|
|
if isinstance(return_stages, list):
|
|
if max(return_stages) > len(stages_pattern) or min(return_stages) < 0:
|
|
return_stages = [
|
|
val
|
|
for val in return_stages
|
|
if val >= 0 and val < len(stages_pattern)
|
|
]
|
|
return_patterns = [stages_pattern[i] for i in return_stages]
|
|
|
|
if return_patterns:
|
|
self.update_res(return_patterns)
|
|
|
|
def replace_sub(self, *args, **kwargs) -> None:
|
|
msg = "The function 'replace_sub()' is deprecated, please use 'upgrade_sublayer()' instead."
|
|
raise DeprecationWarning(msg)
|
|
|
|
def upgrade_sublayer(
|
|
self,
|
|
layer_name_pattern: Union[str, List[str]],
|
|
handle_func: Callable[[nn.Layer, str], nn.Layer],
|
|
) -> Dict[str, nn.Layer]:
|
|
"""use 'handle_func' to modify the sub-layer(s) specified by 'layer_name_pattern'.
|
|
|
|
Args:
|
|
layer_name_pattern (Union[str, List[str]]): The name of layer to be modified by 'handle_func'.
|
|
handle_func (Callable[[nn.Layer, str], nn.Layer]): The function to modify target layer specified by 'layer_name_pattern'. The formal params are the layer(nn.Layer) and pattern(str) that is (a member of) layer_name_pattern (when layer_name_pattern is List type). And the return is the layer processed.
|
|
|
|
Returns:
|
|
Dict[str, nn.Layer]: The key is the pattern and corresponding value is the result returned by 'handle_func()'.
|
|
|
|
Examples:
|
|
|
|
from paddle import nn
|
|
import paddleclas
|
|
|
|
def rep_func(layer: nn.Layer, pattern: str):
|
|
new_layer = nn.Conv2D(
|
|
in_channels=layer._in_channels,
|
|
out_channels=layer._out_channels,
|
|
kernel_size=5,
|
|
padding=2
|
|
)
|
|
return new_layer
|
|
|
|
net = paddleclas.MobileNetV1()
|
|
res = net.upgrade_sublayer(layer_name_pattern=["blocks[11].depthwise_conv.conv", "blocks[12].depthwise_conv.conv"], handle_func=rep_func)
|
|
print(res)
|
|
# {'blocks[11].depthwise_conv.conv': the corresponding new_layer, 'blocks[12].depthwise_conv.conv': the corresponding new_layer}
|
|
"""
|
|
|
|
if not isinstance(layer_name_pattern, list):
|
|
layer_name_pattern = [layer_name_pattern]
|
|
|
|
hit_layer_pattern_list = []
|
|
for pattern in layer_name_pattern:
|
|
# parse pattern to find target layer and its parent
|
|
layer_list = parse_pattern_str(pattern=pattern, parent_layer=self)
|
|
if not layer_list:
|
|
continue
|
|
|
|
sub_layer_parent = layer_list[-2]["layer"] if len(layer_list) > 1 else self
|
|
sub_layer = layer_list[-1]["layer"]
|
|
sub_layer_name = layer_list[-1]["name"]
|
|
sub_layer_index_list = layer_list[-1]["index_list"]
|
|
|
|
new_sub_layer = handle_func(sub_layer, pattern)
|
|
|
|
if sub_layer_index_list:
|
|
if len(sub_layer_index_list) > 1:
|
|
sub_layer_parent = getattr(sub_layer_parent, sub_layer_name)[
|
|
sub_layer_index_list[0]
|
|
]
|
|
for sub_layer_index in sub_layer_index_list[1:-1]:
|
|
sub_layer_parent = sub_layer_parent[sub_layer_index]
|
|
sub_layer_parent[sub_layer_index_list[-1]] = new_sub_layer
|
|
else:
|
|
getattr(sub_layer_parent, sub_layer_name)[
|
|
sub_layer_index_list[0]
|
|
] = new_sub_layer
|
|
else:
|
|
setattr(sub_layer_parent, sub_layer_name, new_sub_layer)
|
|
|
|
hit_layer_pattern_list.append(pattern)
|
|
return hit_layer_pattern_list
|
|
|
|
def stop_after(self, stop_layer_name: str) -> bool:
|
|
"""stop forward and backward after 'stop_layer_name'.
|
|
|
|
Args:
|
|
stop_layer_name (str): The name of layer that stop forward and backward after this layer.
|
|
|
|
Returns:
|
|
bool: 'True' if successful, 'False' otherwise.
|
|
"""
|
|
|
|
layer_list = parse_pattern_str(stop_layer_name, self)
|
|
if not layer_list:
|
|
return False
|
|
|
|
parent_layer = self
|
|
for layer_dict in layer_list:
|
|
name, index_list = layer_dict["name"], layer_dict["index_list"]
|
|
if not set_identity(parent_layer, name, index_list):
|
|
msg = f"Failed to set the layers that after stop_layer_name('{stop_layer_name}') to IdentityLayer. The error layer's name is '{name}'."
|
|
return False
|
|
parent_layer = layer_dict["layer"]
|
|
|
|
return True
|
|
|
|
def freeze_befor(self, layer_name: str) -> bool:
|
|
"""freeze the layer named layer_name and its previous layer.
|
|
|
|
Args:
|
|
layer_name (str): The name of layer that would be freezed.
|
|
|
|
Returns:
|
|
bool: 'True' if successful, 'False' otherwise.
|
|
"""
|
|
|
|
def stop_grad(layer, pattern):
|
|
class StopGradLayer(nn.Layer):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = layer
|
|
|
|
def forward(self, x):
|
|
x = self.layer(x)
|
|
x.stop_gradient = True
|
|
return x
|
|
|
|
new_layer = StopGradLayer()
|
|
return new_layer
|
|
|
|
res = self.upgrade_sublayer(layer_name, stop_grad)
|
|
if len(res) == 0:
|
|
msg = "Failed to stop the gradient befor the layer named '{layer_name}'"
|
|
return False
|
|
return True
|
|
|
|
def update_res(self, return_patterns: Union[str, List[str]]) -> Dict[str, nn.Layer]:
|
|
"""update the result(s) to be returned.
|
|
|
|
Args:
|
|
return_patterns (Union[str, List[str]]): The name of layer to return output.
|
|
|
|
Returns:
|
|
Dict[str, nn.Layer]: The pattern(str) and corresponding layer(nn.Layer) that have been set successfully.
|
|
"""
|
|
|
|
# clear res_dict that could have been set
|
|
self.res_dict = {}
|
|
|
|
class Handler(object):
|
|
def __init__(self, res_dict):
|
|
# res_dict is a reference
|
|
self.res_dict = res_dict
|
|
|
|
def __call__(self, layer, pattern):
|
|
layer.res_dict = self.res_dict
|
|
layer.res_name = pattern
|
|
if hasattr(layer, "hook_remove_helper"):
|
|
layer.hook_remove_helper.remove()
|
|
layer.hook_remove_helper = layer.register_forward_post_hook(
|
|
save_sub_res_hook
|
|
)
|
|
return layer
|
|
|
|
handle_func = Handler(self.res_dict)
|
|
|
|
hit_layer_pattern_list = self.upgrade_sublayer(
|
|
return_patterns, handle_func=handle_func
|
|
)
|
|
|
|
if hasattr(self, "hook_remove_helper"):
|
|
self.hook_remove_helper.remove()
|
|
self.hook_remove_helper = self.register_forward_post_hook(
|
|
self._return_dict_hook
|
|
)
|
|
|
|
return hit_layer_pattern_list
|
|
|
|
|
|
def save_sub_res_hook(layer, input, output):
|
|
layer.res_dict[layer.res_name] = output
|
|
|
|
|
|
def set_identity(
|
|
parent_layer: nn.Layer, layer_name: str, layer_index_list: str = None
|
|
) -> bool:
|
|
"""set the layer specified by layer_name and layer_index_list to Indentity.
|
|
|
|
Args:
|
|
parent_layer (nn.Layer): The parent layer of target layer specified by layer_name and layer_index_list.
|
|
layer_name (str): The name of target layer to be set to Indentity.
|
|
layer_index_list (str, optional): The index of target layer to be set to Indentity in parent_layer. Defaults to None.
|
|
|
|
Returns:
|
|
bool: True if successfully, False otherwise.
|
|
"""
|
|
|
|
stop_after = False
|
|
for sub_layer_name in parent_layer._sub_layers:
|
|
if stop_after:
|
|
parent_layer._sub_layers[sub_layer_name] = Identity()
|
|
continue
|
|
if sub_layer_name == layer_name:
|
|
stop_after = True
|
|
|
|
if layer_index_list and stop_after:
|
|
layer_container = parent_layer._sub_layers[layer_name]
|
|
for num, layer_index in enumerate(layer_index_list):
|
|
stop_after = False
|
|
for i in range(num):
|
|
layer_container = layer_container[layer_index_list[i]]
|
|
for sub_layer_index in layer_container._sub_layers:
|
|
if stop_after:
|
|
parent_layer._sub_layers[layer_name][sub_layer_index] = Identity()
|
|
continue
|
|
if layer_index == sub_layer_index:
|
|
stop_after = True
|
|
|
|
return stop_after
|
|
|
|
|
|
def parse_pattern_str(
|
|
pattern: str, parent_layer: nn.Layer
|
|
) -> Union[None, List[Dict[str, Union[nn.Layer, str, None]]]]:
|
|
"""parse the string type pattern.
|
|
|
|
Args:
|
|
pattern (str): The pattern to discribe layer.
|
|
parent_layer (nn.Layer): The root layer relative to the pattern.
|
|
|
|
Returns:
|
|
Union[None, List[Dict[str, Union[nn.Layer, str, None]]]]: None if failed. If successfully, the members are layers parsed in order:
|
|
[
|
|
{"layer": first layer, "name": first layer's name parsed, "index": first layer's index parsed if exist},
|
|
{"layer": second layer, "name": second layer's name parsed, "index": second layer's index parsed if exist},
|
|
...
|
|
]
|
|
"""
|
|
|
|
pattern_list = pattern.split(".")
|
|
if not pattern_list:
|
|
msg = f"The pattern('{pattern}') is illegal. Please check and retry."
|
|
return None
|
|
|
|
layer_list = []
|
|
while len(pattern_list) > 0:
|
|
if "[" in pattern_list[0]:
|
|
target_layer_name = pattern_list[0].split("[")[0]
|
|
target_layer_index_list = list(
|
|
index.split("]")[0] for index in pattern_list[0].split("[")[1:]
|
|
)
|
|
else:
|
|
target_layer_name = pattern_list[0]
|
|
target_layer_index_list = None
|
|
|
|
target_layer = getattr(parent_layer, target_layer_name, None)
|
|
|
|
if target_layer is None:
|
|
msg = f"Not found layer named('{target_layer_name}') specifed in pattern('{pattern}')."
|
|
return None
|
|
|
|
if target_layer_index_list:
|
|
for target_layer_index in target_layer_index_list:
|
|
if int(target_layer_index) < 0 or int(target_layer_index) >= len(
|
|
target_layer
|
|
):
|
|
msg = f"Not found layer by index('{target_layer_index}') specifed in pattern('{pattern}'). The index should < {len(target_layer)} and > 0."
|
|
return None
|
|
target_layer = target_layer[target_layer_index]
|
|
|
|
layer_list.append(
|
|
{
|
|
"layer": target_layer,
|
|
"name": target_layer_name,
|
|
"index_list": target_layer_index_list,
|
|
}
|
|
)
|
|
|
|
pattern_list = pattern_list[1:]
|
|
parent_layer = target_layer
|
|
|
|
return layer_list
|
|
|
|
|
|
class AdaptiveAvgPool2D(nn.AdaptiveAvgPool2D):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
if paddle.device.get_device().startswith("npu"):
|
|
self.device = "npu"
|
|
else:
|
|
self.device = None
|
|
|
|
if isinstance(self._output_size, int) and self._output_size == 1:
|
|
self._gap = True
|
|
elif (
|
|
isinstance(self._output_size, tuple)
|
|
and self._output_size[0] == 1
|
|
and self._output_size[1] == 1
|
|
):
|
|
self._gap = True
|
|
else:
|
|
self._gap = False
|
|
|
|
def forward(self, x):
|
|
if self.device == "npu" and self._gap:
|
|
# Global Average Pooling
|
|
N, C, _, _ = x.shape
|
|
x_mean = paddle.mean(x, axis=[2, 3])
|
|
x_mean = paddle.reshape(x_mean, [N, C, 1, 1])
|
|
return x_mean
|
|
else:
|
|
return F.adaptive_avg_pool2d(
|
|
x,
|
|
output_size=self._output_size,
|
|
data_format=self._data_format,
|
|
name=self._name,
|
|
)
|
|
|
|
|
|
# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn.initializer import KaimingNormal, Constant
|
|
from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
|
|
from paddle.regularizer import L2Decay
|
|
from paddle import ParamAttr
|
|
|
|
MODEL_URLS = {
|
|
"PPHGNetV2_B0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B0_ssld_pretrained.pdparams",
|
|
"PPHGNetV2_B1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B1_ssld_pretrained.pdparams",
|
|
"PPHGNetV2_B2": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B2_ssld_pretrained.pdparams",
|
|
"PPHGNetV2_B3": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B3_ssld_pretrained.pdparams",
|
|
"PPHGNetV2_B4": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B4_ssld_pretrained.pdparams",
|
|
"PPHGNetV2_B5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B5_ssld_pretrained.pdparams",
|
|
"PPHGNetV2_B6": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNetV2_B6_ssld_pretrained.pdparams",
|
|
}
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
kaiming_normal_ = KaimingNormal()
|
|
zeros_ = Constant(value=0.0)
|
|
ones_ = Constant(value=1.0)
|
|
|
|
|
|
class LearnableAffineBlock(TheseusLayer):
|
|
"""
|
|
Create a learnable affine block module. This module can significantly improve accuracy on smaller models.
|
|
|
|
Args:
|
|
scale_value (float): The initial value of the scale parameter, default is 1.0.
|
|
bias_value (float): The initial value of the bias parameter, default is 0.0.
|
|
lr_mult (float): The learning rate multiplier, default is 1.0.
|
|
lab_lr (float): The learning rate, default is 0.01.
|
|
"""
|
|
|
|
def __init__(self, scale_value=1.0, bias_value=0.0, lr_mult=1.0, lab_lr=0.01):
|
|
super().__init__()
|
|
self.scale = self.create_parameter(
|
|
shape=[
|
|
1,
|
|
],
|
|
default_initializer=Constant(value=scale_value),
|
|
attr=ParamAttr(learning_rate=lr_mult * lab_lr),
|
|
)
|
|
self.add_parameter("scale", self.scale)
|
|
self.bias = self.create_parameter(
|
|
shape=[
|
|
1,
|
|
],
|
|
default_initializer=Constant(value=bias_value),
|
|
attr=ParamAttr(learning_rate=lr_mult * lab_lr),
|
|
)
|
|
self.add_parameter("bias", self.bias)
|
|
|
|
def forward(self, x):
|
|
return self.scale * x + self.bias
|
|
|
|
|
|
class ConvBNAct(TheseusLayer):
|
|
"""
|
|
ConvBNAct is a combination of convolution and batchnorm layers.
|
|
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
out_channels (int): Number of output channels.
|
|
kernel_size (int): Size of the convolution kernel. Defaults to 3.
|
|
stride (int): Stride of the convolution. Defaults to 1.
|
|
padding (int/str): Padding or padding type for the convolution. Defaults to 1.
|
|
groups (int): Number of groups for the convolution. Defaults to 1.
|
|
use_act: (bool): Whether to use activation function. Defaults to True.
|
|
use_lab (bool): Whether to use the LAB operation. Defaults to False.
|
|
lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
groups=1,
|
|
use_act=True,
|
|
use_lab=False,
|
|
lr_mult=1.0,
|
|
):
|
|
super().__init__()
|
|
self.use_act = use_act
|
|
self.use_lab = use_lab
|
|
self.conv = Conv2D(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding=padding if isinstance(padding, str) else (kernel_size - 1) // 2,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(learning_rate=lr_mult),
|
|
bias_attr=False,
|
|
)
|
|
self.bn = BatchNorm2D(
|
|
out_channels,
|
|
weight_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
|
|
)
|
|
if self.use_act:
|
|
self.act = ReLU()
|
|
if self.use_lab:
|
|
self.lab = LearnableAffineBlock(lr_mult=lr_mult)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
if self.use_act:
|
|
x = self.act(x)
|
|
if self.use_lab:
|
|
x = self.lab(x)
|
|
return x
|
|
|
|
|
|
class LightConvBNAct(TheseusLayer):
|
|
"""
|
|
LightConvBNAct is a combination of pw and dw layers.
|
|
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
out_channels (int): Number of output channels.
|
|
kernel_size (int): Size of the depth-wise convolution kernel.
|
|
use_lab (bool): Whether to use the LAB operation. Defaults to False.
|
|
lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
use_lab=False,
|
|
lr_mult=1.0,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.conv1 = ConvBNAct(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
use_act=False,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.conv2 = ConvBNAct(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
groups=out_channels,
|
|
use_act=True,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
return x
|
|
|
|
|
|
class StemBlock(TheseusLayer):
|
|
"""
|
|
StemBlock for PP-HGNetV2.
|
|
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
mid_channels (int): Number of middle channels.
|
|
out_channels (int): Number of output channels.
|
|
use_lab (bool): Whether to use the LAB operation. Defaults to False.
|
|
lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0.
|
|
"""
|
|
|
|
def __init__(
|
|
self, in_channels, mid_channels, out_channels, use_lab=False, lr_mult=1.0
|
|
):
|
|
super().__init__()
|
|
self.stem1 = ConvBNAct(
|
|
in_channels=in_channels,
|
|
out_channels=mid_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.stem2a = ConvBNAct(
|
|
in_channels=mid_channels,
|
|
out_channels=mid_channels // 2,
|
|
kernel_size=2,
|
|
stride=1,
|
|
padding="SAME",
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.stem2b = ConvBNAct(
|
|
in_channels=mid_channels // 2,
|
|
out_channels=mid_channels,
|
|
kernel_size=2,
|
|
stride=1,
|
|
padding="SAME",
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.stem3 = ConvBNAct(
|
|
in_channels=mid_channels * 2,
|
|
out_channels=mid_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.stem4 = ConvBNAct(
|
|
in_channels=mid_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.pool = nn.MaxPool2D(
|
|
kernel_size=2, stride=1, ceil_mode=True, padding="SAME"
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.stem1(x)
|
|
x2 = self.stem2a(x)
|
|
x2 = self.stem2b(x2)
|
|
x1 = self.pool(x)
|
|
x = paddle.concat([x1, x2], 1)
|
|
x = self.stem3(x)
|
|
x = self.stem4(x)
|
|
|
|
return x
|
|
|
|
|
|
class HGV2_Block(TheseusLayer):
|
|
"""
|
|
HGV2_Block, the basic unit that constitutes the HGV2_Stage.
|
|
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
mid_channels (int): Number of middle channels.
|
|
out_channels (int): Number of output channels.
|
|
kernel_size (int): Size of the convolution kernel. Defaults to 3.
|
|
layer_num (int): Number of layers in the HGV2 block. Defaults to 6.
|
|
stride (int): Stride of the convolution. Defaults to 1.
|
|
padding (int/str): Padding or padding type for the convolution. Defaults to 1.
|
|
groups (int): Number of groups for the convolution. Defaults to 1.
|
|
use_act (bool): Whether to use activation function. Defaults to True.
|
|
use_lab (bool): Whether to use the LAB operation. Defaults to False.
|
|
lr_mult (float): Learning rate multiplier for the layer. Defaults to 1.0.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
layer_num=6,
|
|
identity=False,
|
|
light_block=True,
|
|
use_lab=False,
|
|
lr_mult=1.0,
|
|
):
|
|
super().__init__()
|
|
self.identity = identity
|
|
|
|
self.layers = nn.LayerList()
|
|
block_type = "LightConvBNAct" if light_block else "ConvBNAct"
|
|
for i in range(layer_num):
|
|
self.layers.append(
|
|
eval(block_type)(
|
|
in_channels=in_channels if i == 0 else mid_channels,
|
|
out_channels=mid_channels,
|
|
stride=1,
|
|
kernel_size=kernel_size,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
)
|
|
# feature aggregation
|
|
total_channels = in_channels + layer_num * mid_channels
|
|
self.aggregation_squeeze_conv = ConvBNAct(
|
|
in_channels=total_channels,
|
|
out_channels=out_channels // 2,
|
|
kernel_size=1,
|
|
stride=1,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
self.aggregation_excitation_conv = ConvBNAct(
|
|
in_channels=out_channels // 2,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
output = []
|
|
output.append(x)
|
|
for layer in self.layers:
|
|
x = layer(x)
|
|
output.append(x)
|
|
x = paddle.concat(output, axis=1)
|
|
x = self.aggregation_squeeze_conv(x)
|
|
x = self.aggregation_excitation_conv(x)
|
|
if self.identity:
|
|
x += identity
|
|
return x
|
|
|
|
|
|
class HGV2_Stage(TheseusLayer):
|
|
"""
|
|
HGV2_Stage, the basic unit that constitutes the PPHGNetV2.
|
|
|
|
Args:
|
|
in_channels (int): Number of input channels.
|
|
mid_channels (int): Number of middle channels.
|
|
out_channels (int): Number of output channels.
|
|
block_num (int): Number of blocks in the HGV2 stage.
|
|
layer_num (int): Number of layers in the HGV2 block. Defaults to 6.
|
|
is_downsample (bool): Whether to use downsampling operation. Defaults to False.
|
|
light_block (bool): Whether to use light block. Defaults to True.
|
|
kernel_size (int): Size of the convolution kernel. Defaults to 3.
|
|
use_lab (bool, optional): Whether to use the LAB operation. Defaults to False.
|
|
lr_mult (float, optional): Learning rate multiplier for the layer. Defaults to 1.0.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
block_num,
|
|
layer_num=6,
|
|
is_downsample=True,
|
|
light_block=True,
|
|
kernel_size=3,
|
|
use_lab=False,
|
|
lr_mult=1.0,
|
|
):
|
|
|
|
super().__init__()
|
|
self.is_downsample = is_downsample
|
|
if self.is_downsample:
|
|
self.downsample = ConvBNAct(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
groups=in_channels,
|
|
use_act=False,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
|
|
blocks_list = []
|
|
for i in range(block_num):
|
|
blocks_list.append(
|
|
HGV2_Block(
|
|
in_channels=in_channels if i == 0 else out_channels,
|
|
mid_channels=mid_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
layer_num=layer_num,
|
|
identity=False if i == 0 else True,
|
|
light_block=light_block,
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult,
|
|
)
|
|
)
|
|
self.blocks = nn.Sequential(*blocks_list)
|
|
|
|
def forward(self, x):
|
|
if self.is_downsample:
|
|
x = self.downsample(x)
|
|
x = self.blocks(x)
|
|
return x
|
|
|
|
|
|
class PPHGNetV2(TheseusLayer):
|
|
"""
|
|
PPHGNetV2
|
|
|
|
Args:
|
|
stage_config (dict): Config for PPHGNetV2 stages. such as the number of channels, stride, etc.
|
|
stem_channels: (list): Number of channels of the stem of the PPHGNetV2.
|
|
use_lab (bool): Whether to use the LAB operation. Defaults to False.
|
|
use_last_conv (bool): Whether to use the last conv layer as the output channel. Defaults to True.
|
|
class_expand (int): Number of channels for the last 1x1 convolutional layer.
|
|
drop_prob (float): Dropout probability for the last 1x1 convolutional layer. Defaults to 0.0.
|
|
class_num (int): The number of classes for the classification layer. Defaults to 1000.
|
|
lr_mult_list (list): Learning rate multiplier for the stages. Defaults to [1.0, 1.0, 1.0, 1.0, 1.0].
|
|
Returns:
|
|
model: nn.Layer. Specific PPHGNetV2 model depends on args.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
stage_config,
|
|
stem_channels=[3, 32, 64],
|
|
use_lab=False,
|
|
use_last_conv=True,
|
|
class_expand=2048,
|
|
dropout_prob=0.0,
|
|
class_num=1000,
|
|
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.use_lab = use_lab
|
|
self.use_last_conv = use_last_conv
|
|
self.class_expand = class_expand
|
|
self.class_num = class_num
|
|
|
|
# stem
|
|
self.stem = StemBlock(
|
|
in_channels=stem_channels[0],
|
|
mid_channels=stem_channels[1],
|
|
out_channels=stem_channels[2],
|
|
use_lab=use_lab,
|
|
lr_mult=lr_mult_list[0],
|
|
)
|
|
|
|
# stages
|
|
self.stages = nn.LayerList()
|
|
for i, k in enumerate(stage_config):
|
|
(
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
block_num,
|
|
is_downsample,
|
|
light_block,
|
|
kernel_size,
|
|
layer_num,
|
|
) = stage_config[k]
|
|
self.stages.append(
|
|
HGV2_Stage(
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
block_num,
|
|
layer_num,
|
|
is_downsample,
|
|
light_block,
|
|
kernel_size,
|
|
use_lab,
|
|
lr_mult=lr_mult_list[i + 1],
|
|
)
|
|
)
|
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
|
|
if self.use_last_conv:
|
|
self.last_conv = Conv2D(
|
|
in_channels=out_channels,
|
|
out_channels=self.class_expand,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias_attr=False,
|
|
)
|
|
self.act = ReLU()
|
|
if self.use_lab:
|
|
self.lab = LearnableAffineBlock()
|
|
self.dropout = nn.Dropout(p=dropout_prob, mode="downscale_in_infer")
|
|
|
|
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
|
|
self.fc = nn.Linear(
|
|
self.class_expand if self.use_last_conv else out_channels, self.class_num
|
|
)
|
|
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
for m in self.sublayers():
|
|
if isinstance(m, nn.Conv2D):
|
|
kaiming_normal_(m.weight)
|
|
elif isinstance(m, (nn.BatchNorm2D)):
|
|
ones_(m.weight)
|
|
zeros_(m.bias)
|
|
elif isinstance(m, nn.Linear):
|
|
zeros_(m.bias)
|
|
|
|
def forward(self, x):
|
|
x = self.stem(x)
|
|
for stage in self.stages:
|
|
x = stage(x)
|
|
return x
|
|
|
|
|
|
def PPHGNetV2_B0(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNetV2_B0
|
|
Args:
|
|
pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld (bool) Whether using ssld pretrained model when pretrained is True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B0` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [16, 16, 64, 1, False, False, 3, 3],
|
|
"stage2": [64, 32, 256, 1, True, False, 3, 3],
|
|
"stage3": [256, 64, 512, 2, True, True, 5, 3],
|
|
"stage4": [512, 128, 1024, 1, True, True, 5, 3],
|
|
}
|
|
|
|
model = PPHGNetV2(
|
|
stem_channels=[3, 16, 16], stage_config=stage_config, use_lab=True, **kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
def PPHGNetV2_B1(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNetV2_B1
|
|
Args:
|
|
pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld (bool) Whether using ssld pretrained model when pretrained is True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B1` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [32, 32, 64, 1, False, False, 3, 3],
|
|
"stage2": [64, 48, 256, 1, True, False, 3, 3],
|
|
"stage3": [256, 96, 512, 2, True, True, 5, 3],
|
|
"stage4": [512, 192, 1024, 1, True, True, 5, 3],
|
|
}
|
|
|
|
model = PPHGNetV2(
|
|
stem_channels=[3, 24, 32], stage_config=stage_config, use_lab=True, **kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
def PPHGNetV2_B2(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNetV2_B2
|
|
Args:
|
|
pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld (bool) Whether using ssld pretrained model when pretrained is True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B2` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [32, 32, 96, 1, False, False, 3, 4],
|
|
"stage2": [96, 64, 384, 1, True, False, 3, 4],
|
|
"stage3": [384, 128, 768, 3, True, True, 5, 4],
|
|
"stage4": [768, 256, 1536, 1, True, True, 5, 4],
|
|
}
|
|
|
|
model = PPHGNetV2(
|
|
stem_channels=[3, 24, 32], stage_config=stage_config, use_lab=True, **kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
def PPHGNetV2_B3(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNetV2_B3
|
|
Args:
|
|
pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld (bool) Whether using ssld pretrained model when pretrained is True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B3` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [32, 32, 128, 1, False, False, 3, 5],
|
|
"stage2": [128, 64, 512, 1, True, False, 3, 5],
|
|
"stage3": [512, 128, 1024, 3, True, True, 5, 5],
|
|
"stage4": [1024, 256, 2048, 1, True, True, 5, 5],
|
|
}
|
|
|
|
model = PPHGNetV2(
|
|
stem_channels=[3, 24, 32], stage_config=stage_config, use_lab=True, **kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
def PPHGNetV2_B5(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNetV2_B5
|
|
Args:
|
|
pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld (bool) Whether using ssld pretrained model when pretrained is True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B5` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [64, 64, 128, 1, False, False, 3, 6],
|
|
"stage2": [128, 128, 512, 2, True, False, 3, 6],
|
|
"stage3": [512, 256, 1024, 5, True, True, 5, 6],
|
|
"stage4": [1024, 512, 2048, 2, True, True, 5, 6],
|
|
}
|
|
|
|
model = PPHGNetV2(
|
|
stem_channels=[3, 32, 64], stage_config=stage_config, use_lab=False, **kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
def PPHGNetV2_B6(pretrained=False, use_ssld=False, **kwargs):
|
|
"""
|
|
PPHGNetV2_B6
|
|
Args:
|
|
pretrained (bool/str): If `True` load pretrained parameters, `False` otherwise.
|
|
If str, means the path of the pretrained model.
|
|
use_ssld (bool) Whether using ssld pretrained model when pretrained is True.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B6` model depends on args.
|
|
"""
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [96, 96, 192, 2, False, False, 3, 6],
|
|
"stage2": [192, 192, 512, 3, True, False, 3, 6],
|
|
"stage3": [512, 384, 1024, 6, True, True, 5, 6],
|
|
"stage4": [1024, 768, 2048, 3, True, True, 5, 6],
|
|
}
|
|
|
|
model = PPHGNetV2(
|
|
stem_channels=[3, 48, 96], stage_config=stage_config, use_lab=False, **kwargs
|
|
)
|
|
return model
|
|
|
|
|
|
class PPHGNetV2_B4(nn.Layer):
|
|
"""
|
|
PPHGNetV2_B4
|
|
Args:
|
|
in_channels (int): Number of input channels. Default is 3 (for RGB images).
|
|
class_num (int): Number of classes for classification. Default is 1000.
|
|
Returns:
|
|
model: nn.Layer. Specific `PPHGNetV2_B4` model with defined architecture.
|
|
"""
|
|
|
|
def __init__(self, in_channels=3, class_num=1000):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = 2048
|
|
stage_config = {
|
|
# in_channels, mid_channels, out_channels, num_blocks, is_downsample, light_block, kernel_size, layer_num
|
|
"stage1": [48, 48, 128, 1, False, False, 3, 6],
|
|
"stage2": [128, 96, 512, 1, True, False, 3, 6],
|
|
"stage3": [512, 192, 1024, 3, True, True, 5, 6],
|
|
"stage4": [1024, 384, 2048, 1, True, True, 5, 6],
|
|
}
|
|
|
|
self.pphgnet_b4 = PPHGNetV2(
|
|
stem_channels=[3, 32, 48],
|
|
stage_config=stage_config,
|
|
class_num=class_num,
|
|
use_lab=False,
|
|
)
|
|
|
|
def forward(self, input_data):
|
|
if self.training:
|
|
pixel_values, label, attention_mask = input_data
|
|
else:
|
|
if isinstance(input_data, list):
|
|
pixel_values = input_data[0]
|
|
else:
|
|
pixel_values = input_data
|
|
num_channels = pixel_values.shape[1]
|
|
if num_channels == 1:
|
|
pixel_values = paddle.repeat_interleave(pixel_values, repeats=3, axis=1)
|
|
pphgnet_b4_output = self.pphgnet_b4(pixel_values)
|
|
b, c, h, w = pphgnet_b4_output.shape
|
|
pphgnet_b4_output = pphgnet_b4_output.reshape([b, c, h * w]).transpose(
|
|
[0, 2, 1]
|
|
)
|
|
pphgnet_b4_output = DonutSwinModelOutput(
|
|
last_hidden_state=pphgnet_b4_output,
|
|
pooler_output=None,
|
|
hidden_states=None,
|
|
attentions=False,
|
|
reshaped_hidden_states=None,
|
|
)
|
|
if self.training:
|
|
return pphgnet_b4_output, label, attention_mask
|
|
else:
|
|
return pphgnet_b4_output
|