mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
150 lines
5.6 KiB
C++
150 lines
5.6 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <include/structure_layout.h>
|
|
|
|
namespace PaddleOCR {
|
|
|
|
void StructureLayoutRecognizer::Run(cv::Mat img,
|
|
std::vector<StructurePredictResult> &result,
|
|
std::vector<double> ×) {
|
|
std::chrono::duration<float> preprocess_diff =
|
|
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
|
std::chrono::duration<float> inference_diff =
|
|
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
|
std::chrono::duration<float> postprocess_diff =
|
|
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
|
|
|
// preprocess
|
|
auto preprocess_start = std::chrono::steady_clock::now();
|
|
|
|
cv::Mat srcimg;
|
|
img.copyTo(srcimg);
|
|
cv::Mat resize_img;
|
|
this->resize_op_.Run(srcimg, resize_img, 800, 608);
|
|
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
|
this->is_scale_);
|
|
|
|
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
|
this->permute_op_.Run(&resize_img, input.data());
|
|
auto preprocess_end = std::chrono::steady_clock::now();
|
|
preprocess_diff += preprocess_end - preprocess_start;
|
|
|
|
// inference.
|
|
auto input_names = this->predictor_->GetInputNames();
|
|
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
|
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
|
auto inference_start = std::chrono::steady_clock::now();
|
|
input_t->CopyFromCpu(input.data());
|
|
|
|
this->predictor_->Run();
|
|
|
|
// Get output tensor
|
|
std::vector<std::vector<float>> out_tensor_list;
|
|
std::vector<std::vector<int>> output_shape_list;
|
|
auto output_names = this->predictor_->GetOutputNames();
|
|
for (int j = 0; j < output_names.size(); j++) {
|
|
auto output_tensor = this->predictor_->GetOutputHandle(output_names[j]);
|
|
std::vector<int> output_shape = output_tensor->shape();
|
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
|
std::multiplies<int>());
|
|
output_shape_list.push_back(output_shape);
|
|
|
|
std::vector<float> out_data;
|
|
out_data.resize(out_num);
|
|
output_tensor->CopyToCpu(out_data.data());
|
|
out_tensor_list.push_back(out_data);
|
|
}
|
|
auto inference_end = std::chrono::steady_clock::now();
|
|
inference_diff += inference_end - inference_start;
|
|
|
|
// postprocess
|
|
auto postprocess_start = std::chrono::steady_clock::now();
|
|
|
|
std::vector<int> bbox_num;
|
|
int reg_max = 0;
|
|
for (int i = 0; i < out_tensor_list.size(); i++) {
|
|
if (i == this->post_processor_.fpn_stride_.size()) {
|
|
reg_max = output_shape_list[i][2] / 4;
|
|
break;
|
|
}
|
|
}
|
|
std::vector<int> ori_shape = {srcimg.rows, srcimg.cols};
|
|
std::vector<int> resize_shape = {resize_img.rows, resize_img.cols};
|
|
this->post_processor_.Run(result, out_tensor_list, ori_shape, resize_shape,
|
|
reg_max);
|
|
bbox_num.push_back(result.size());
|
|
|
|
auto postprocess_end = std::chrono::steady_clock::now();
|
|
postprocess_diff += postprocess_end - postprocess_start;
|
|
times.push_back(double(preprocess_diff.count() * 1000));
|
|
times.push_back(double(inference_diff.count() * 1000));
|
|
times.push_back(double(postprocess_diff.count() * 1000));
|
|
}
|
|
|
|
void StructureLayoutRecognizer::LoadModel(const std::string &model_dir) {
|
|
paddle_infer::Config config;
|
|
if (Utility::PathExists(model_dir + "/inference.pdmodel") &&
|
|
Utility::PathExists(model_dir + "/inference.pdiparams")) {
|
|
config.SetModel(model_dir + "/inference.pdmodel",
|
|
model_dir + "/inference.pdiparams");
|
|
} else if (Utility::PathExists(model_dir + "/model.pdmodel") &&
|
|
Utility::PathExists(model_dir + "/model.pdiparams")) {
|
|
config.SetModel(model_dir + "/model.pdmodel",
|
|
model_dir + "/model.pdiparams");
|
|
} else {
|
|
std::cerr << "[ERROR] not find model.pdiparams or inference.pdiparams in "
|
|
<< model_dir << std::endl;
|
|
exit(1);
|
|
}
|
|
|
|
if (this->use_gpu_) {
|
|
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
|
if (this->use_tensorrt_) {
|
|
auto precision = paddle_infer::Config::Precision::kFloat32;
|
|
if (this->precision_ == "fp16") {
|
|
precision = paddle_infer::Config::Precision::kHalf;
|
|
}
|
|
if (this->precision_ == "int8") {
|
|
precision = paddle_infer::Config::Precision::kInt8;
|
|
}
|
|
config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
|
|
if (!Utility::PathExists("./trt_layout_shape.txt")) {
|
|
config.CollectShapeRangeInfo("./trt_layout_shape.txt");
|
|
} else {
|
|
config.EnableTunedTensorRtDynamicShape("./trt_layout_shape.txt", true);
|
|
}
|
|
}
|
|
} else {
|
|
config.DisableGpu();
|
|
if (this->use_mkldnn_) {
|
|
config.EnableMKLDNN();
|
|
}
|
|
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
|
}
|
|
|
|
// false for zero copy tensor
|
|
config.SwitchUseFeedFetchOps(false);
|
|
// true for multiple input
|
|
config.SwitchSpecifyInputNames(true);
|
|
|
|
config.SwitchIrOptim(true);
|
|
|
|
config.EnableMemoryOptim();
|
|
config.DisableGlogInfo();
|
|
|
|
this->predictor_ = paddle_infer::CreatePredictor(config);
|
|
}
|
|
} // namespace PaddleOCR
|