PaddleOCR/deploy/cpp_infer/src/structure_table.cpp
2022-09-20 03:40:05 +00:00

163 lines
6.9 KiB
C++

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/structure_table.h>
namespace PaddleOCR {
void StructureTableRecognizer::Run(
std::vector<cv::Mat> img_list,
std::vector<std::vector<std::string>> &structure_html_tags,
std::vector<float> &structure_scores,
std::vector<std::vector<std::vector<int>>> &structure_boxes,
std::vector<double> &times) {
std::chrono::duration<float> preprocess_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> inference_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
std::chrono::duration<float> postprocess_diff =
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
int img_num = img_list.size();
for (int beg_img_no = 0; beg_img_no < img_num;
beg_img_no += this->table_batch_num_) {
// preprocess
auto preprocess_start = std::chrono::steady_clock::now();
int end_img_no = std::min(img_num, beg_img_no + this->table_batch_num_);
int batch_num = end_img_no - beg_img_no;
std::vector<cv::Mat> norm_img_batch;
std::vector<int> width_list;
std::vector<int> height_list;
for (int ino = beg_img_no; ino < end_img_no; ino++) {
cv::Mat srcimg;
img_list[ino].copyTo(srcimg);
cv::Mat resize_img;
cv::Mat pad_img;
this->resize_op_.Run(srcimg, resize_img, this->table_max_len_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
this->pad_op_.Run(resize_img, pad_img, this->table_max_len_);
norm_img_batch.push_back(pad_img);
width_list.push_back(srcimg.cols);
height_list.push_back(srcimg.rows);
}
std::vector<float> input(
batch_num * 3 * this->table_max_len_ * this->table_max_len_, 0.0f);
this->permute_op_.Run(norm_img_batch, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
preprocess_diff += preprocess_end - preprocess_start;
// inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape(
{batch_num, 3, this->table_max_len_, this->table_max_len_});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
auto output_names = this->predictor_->GetOutputNames();
auto output_tensor0 = this->predictor_->GetOutputHandle(output_names[0]);
auto output_tensor1 = this->predictor_->GetOutputHandle(output_names[1]);
std::vector<int> predict_shape0 = output_tensor0->shape();
std::vector<int> predict_shape1 = output_tensor1->shape();
int out_num0 = std::accumulate(predict_shape0.begin(), predict_shape0.end(),
1, std::multiplies<int>());
int out_num1 = std::accumulate(predict_shape1.begin(), predict_shape1.end(),
1, std::multiplies<int>());
std::vector<float> loc_preds;
std::vector<float> structure_probs;
loc_preds.resize(out_num0);
structure_probs.resize(out_num1);
output_tensor0->CopyToCpu(loc_preds.data());
output_tensor1->CopyToCpu(structure_probs.data());
auto inference_end = std::chrono::steady_clock::now();
inference_diff += inference_end - inference_start;
// postprocess
auto postprocess_start = std::chrono::steady_clock::now();
std::vector<std::vector<std::string>> structure_html_tag_batch;
std::vector<float> structure_score_batch;
std::vector<std::vector<std::vector<int>>> structure_boxes_batch;
this->post_processor_.Run(loc_preds, structure_probs, structure_score_batch,
predict_shape0, predict_shape1,
structure_html_tag_batch, structure_boxes_batch,
width_list, height_list);
for (int m = 0; m < predict_shape0[0]; m++) {
structure_html_tag_batch[m].insert(structure_html_tag_batch[m].begin(),
"<table>");
structure_html_tag_batch[m].insert(structure_html_tag_batch[m].begin(),
"<body>");
structure_html_tag_batch[m].insert(structure_html_tag_batch[m].begin(),
"<html>");
structure_html_tag_batch[m].push_back("</table>");
structure_html_tag_batch[m].push_back("</body>");
structure_html_tag_batch[m].push_back("</html>");
structure_html_tags.push_back(structure_html_tag_batch[m]);
structure_scores.push_back(structure_score_batch[m]);
structure_boxes.push_back(structure_boxes_batch[m]);
}
auto postprocess_end = std::chrono::steady_clock::now();
postprocess_diff += postprocess_end - postprocess_start;
times.push_back(double(preprocess_diff.count() * 1000));
times.push_back(double(inference_diff.count() * 1000));
times.push_back(double(postprocess_diff.count() * 1000));
}
}
void StructureTableRecognizer::LoadModel(const std::string &model_dir) {
paddle_infer::Config config;
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
if (!Utility::PathExists("./trt_table_shape.txt")) {
config.CollectShapeRangeInfo("./trt_table_shape.txt");
} else {
config.EnableTunedTensorRtDynamicShape("./trt_table_shape.txt", true);
}
}
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// false for zero copy tensor
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = paddle_infer::CreatePredictor(config);
}
} // namespace PaddleOCR