PaddleOCR/deploy/cpp_infer/include/preprocess_op.cpp

134 lines
4.0 KiB
C++

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/preprocess_op.h>
namespace PaddleOCR {
void Permute::Run(const cv::Mat *im, float *data) {
int rh = im->rows;
int rw = im->cols;
int rc = im->channels();
for (int i = 0; i < rc; ++i) {
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
}
}
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &scale, const bool is_scale) {
double e = 1.0;
if (is_scale) {
e /= 255.0;
}
(*im).convertTo(*im, CV_32FC3, e);
std::vector<cv::Mat> bgr_channels(3);
cv::split(*im, bgr_channels);
for (auto i = 0; i < bgr_channels.size(); i++) {
bgr_channels[i].convertTo(bgr_channels[i], CV_32FC1, 1.0 * scale[i],
(0.0 - mean[i]) * scale[i]);
}
cv::merge(bgr_channels, *im);
}
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
int max_size_len, float &ratio_h, float &ratio_w,
bool use_tensorrt) {
int w = img.cols;
int h = img.rows;
float ratio = 1.f;
int max_wh = w >= h ? w : h;
if (max_wh > max_size_len) {
if (h > w) {
ratio = float(max_size_len) / float(h);
} else {
ratio = float(max_size_len) / float(w);
}
}
int resize_h = int(float(h) * ratio);
int resize_w = int(float(w) * ratio);
resize_h = max(int(round(float(resize_h) / 32) * 32), 32);
resize_w = max(int(round(float(resize_w) / 32) * 32), 32);
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_h = float(resize_h) / float(h);
ratio_w = float(resize_w) / float(w);
}
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
bool use_tensorrt,
const std::vector<int> &rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
imgW = int(32 * wh_ratio);
float ratio = float(img.cols) / float(img.rows);
int resize_w, resize_h;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
{127, 127, 127});
}
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
bool use_tensorrt,
const std::vector<int> &rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
float ratio = float(img.cols) / float(img.rows);
int resize_w, resize_h;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
if (resize_w < imgW) {
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
}
}
} // namespace PaddleOCR