mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
203 lines
7.6 KiB
Python
203 lines
7.6 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import copy
|
||
import cv2
|
||
import random
|
||
import numpy as np
|
||
from PIL import Image
|
||
from shapely.geometry import Polygon
|
||
|
||
from ppocr.data.imaug.iaa_augment import IaaAugment
|
||
from ppocr.data.imaug.random_crop_data import is_poly_outside_rect
|
||
|
||
|
||
def get_rotate_crop_image(img, points):
|
||
'''
|
||
img_height, img_width = img.shape[0:2]
|
||
left = int(np.min(points[:, 0]))
|
||
right = int(np.max(points[:, 0]))
|
||
top = int(np.min(points[:, 1]))
|
||
bottom = int(np.max(points[:, 1]))
|
||
img_crop = img[top:bottom, left:right, :].copy()
|
||
points[:, 0] = points[:, 0] - left
|
||
points[:, 1] = points[:, 1] - top
|
||
'''
|
||
img_crop_width = int(
|
||
max(
|
||
np.linalg.norm(points[0] - points[1]),
|
||
np.linalg.norm(points[2] - points[3])))
|
||
img_crop_height = int(
|
||
max(
|
||
np.linalg.norm(points[0] - points[3]),
|
||
np.linalg.norm(points[1] - points[2])))
|
||
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
||
[img_crop_width, img_crop_height],
|
||
[0, img_crop_height]])
|
||
M = cv2.getPerspectiveTransform(points, pts_std)
|
||
dst_img = cv2.warpPerspective(
|
||
img,
|
||
M, (img_crop_width, img_crop_height),
|
||
borderMode=cv2.BORDER_REPLICATE,
|
||
flags=cv2.INTER_CUBIC)
|
||
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
||
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
||
dst_img = np.rot90(dst_img)
|
||
return dst_img
|
||
|
||
|
||
class CopyPaste(object):
|
||
def __init__(self, objects_paste_ratio=0.2, limit_paste=True, **kwargs):
|
||
self.ext_data_num = 1
|
||
self.objects_paste_ratio = objects_paste_ratio
|
||
self.limit_paste = limit_paste
|
||
augmenter_args = [{'type': 'Resize', 'args': {'size': [0.5, 3]}}]
|
||
self.aug = IaaAugment(augmenter_args)
|
||
|
||
def __call__(self, data):
|
||
src_img = data['image']
|
||
src_polys = data['polys'].tolist()
|
||
src_ignores = data['ignore_tags'].tolist()
|
||
ext_data = data['ext_data'][0]
|
||
ext_image = ext_data['image']
|
||
ext_polys = ext_data['polys']
|
||
ext_ignores = ext_data['ignore_tags']
|
||
|
||
indexs = [i for i in range(len(ext_ignores)) if not ext_ignores[i]]
|
||
select_num = max(
|
||
1, min(int(self.objects_paste_ratio * len(ext_polys)), 30))
|
||
|
||
random.shuffle(indexs)
|
||
select_idxs = indexs[:select_num]
|
||
select_polys = ext_polys[select_idxs]
|
||
select_ignores = ext_ignores[select_idxs]
|
||
|
||
src_img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)
|
||
ext_image = cv2.cvtColor(ext_image, cv2.COLOR_BGR2RGB)
|
||
src_img = Image.fromarray(src_img).convert('RGBA')
|
||
for poly, tag in zip(select_polys, select_ignores):
|
||
box_img = get_rotate_crop_image(ext_image, poly)
|
||
|
||
src_img, box = self.paste_img(src_img, box_img, src_polys)
|
||
if box is not None:
|
||
src_polys.append(box)
|
||
src_ignores.append(tag)
|
||
src_img = cv2.cvtColor(np.array(src_img), cv2.COLOR_RGB2BGR)
|
||
h, w = src_img.shape[:2]
|
||
src_polys = np.array(src_polys)
|
||
src_polys[:, :, 0] = np.clip(src_polys[:, :, 0], 0, w)
|
||
src_polys[:, :, 1] = np.clip(src_polys[:, :, 1], 0, h)
|
||
data['image'] = src_img
|
||
data['polys'] = src_polys
|
||
data['ignore_tags'] = np.array(src_ignores)
|
||
return data
|
||
|
||
def paste_img(self, src_img, box_img, src_polys):
|
||
box_img_pil = Image.fromarray(box_img).convert('RGBA')
|
||
src_w, src_h = src_img.size
|
||
box_w, box_h = box_img_pil.size
|
||
if box_w > src_w or box_h > src_h:
|
||
return src_img, None
|
||
angle = np.random.randint(0, 360)
|
||
box = np.array([[[0, 0], [box_w, 0], [box_w, box_h], [0, box_h]]])
|
||
box = rotate_bbox(box_img, box, angle)[0]
|
||
|
||
paste_x, paste_y = self.select_coord(src_polys, box, src_w - box_w,
|
||
src_h - box_h)
|
||
if paste_x is None:
|
||
return src_img, None
|
||
box[:, 0] += paste_x
|
||
box[:, 1] += paste_y
|
||
box_img_pil = box_img_pil.rotate(angle, expand=1)
|
||
r, g, b, A = box_img_pil.split()
|
||
src_img.paste(box_img_pil, (paste_x, paste_y), mask=A)
|
||
|
||
return src_img, box
|
||
|
||
def select_coord(self, src_polys, box, endx, endy):
|
||
if self.limit_paste:
|
||
xmin, ymin, xmax, ymax = box[:, 0].min(), box[:, 1].min(
|
||
), box[:, 0].max(), box[:, 1].max()
|
||
for _ in range(50):
|
||
paste_x = random.randint(0, endx)
|
||
paste_y = random.randint(0, endy)
|
||
xmin1 = xmin + paste_x
|
||
xmax1 = xmax + paste_x
|
||
ymin1 = ymin + paste_y
|
||
ymax1 = ymax + paste_y
|
||
|
||
num_poly_in_rect = 0
|
||
for poly in src_polys:
|
||
if not is_poly_outside_rect(poly, xmax1, ymin1,
|
||
xmax1 - xmin1, ymax1 - ymin1):
|
||
num_poly_in_rect += 1
|
||
break
|
||
if num_poly_in_rect == 0:
|
||
return paste_x, paste_y
|
||
return None, None
|
||
else:
|
||
paste_x = random.randint(0, endx)
|
||
paste_y = random.randint(0, endy)
|
||
return paste_x, paste_y
|
||
|
||
|
||
def get_union(pD, pG):
|
||
return Polygon(pD).union(Polygon(pG)).area
|
||
|
||
|
||
def get_intersection_over_union(pD, pG):
|
||
return get_intersection(pD, pG) / get_union(pD, pG)
|
||
|
||
|
||
def get_intersection(pD, pG):
|
||
return Polygon(pD).intersection(Polygon(pG)).area
|
||
|
||
|
||
def rotate_bbox(img, text_polys, angle, scale=1):
|
||
"""
|
||
从给定的角度中选择一个角度,对图片和文本框进行旋转
|
||
:param img: 图片
|
||
:param text_polys: 文本框
|
||
:param degrees: 角度,可以是一个数值或者list
|
||
:param same_size: 是否保持和原图一样大
|
||
:return: 旋转后的图片和角度
|
||
"""
|
||
# ---------------------- 旋转图像 ----------------------
|
||
w = img.shape[1]
|
||
h = img.shape[0]
|
||
|
||
# 角度变弧度
|
||
rangle = np.deg2rad(angle)
|
||
# 计算旋转之后图像的w, h
|
||
nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w))
|
||
nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w))
|
||
# 构造仿射矩阵
|
||
rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)
|
||
# 计算原图中心点到新图中心点的偏移量
|
||
rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
|
||
# 更新仿射矩阵
|
||
rot_mat[0, 2] += rot_move[0]
|
||
rot_mat[1, 2] += rot_move[1]
|
||
|
||
# ---------------------- 矫正bbox坐标 ----------------------
|
||
# rot_mat是最终的旋转矩阵
|
||
# 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
|
||
rot_text_polys = list()
|
||
for bbox in text_polys:
|
||
point1 = np.dot(rot_mat, np.array([bbox[0, 0], bbox[0, 1], 1]))
|
||
point2 = np.dot(rot_mat, np.array([bbox[1, 0], bbox[1, 1], 1]))
|
||
point3 = np.dot(rot_mat, np.array([bbox[2, 0], bbox[2, 1], 1]))
|
||
point4 = np.dot(rot_mat, np.array([bbox[3, 0], bbox[3, 1], 1]))
|
||
rot_text_polys.append([point1, point2, point3, point4])
|
||
return np.array(rot_text_polys, dtype=np.float32)
|