PaddleOCR/ppstructure/utility.py

276 lines
9.2 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import ast
import PIL
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from tools.infer.utility import (
draw_ocr_box_txt,
str2bool,
str2int_tuple,
init_args as infer_args,
)
import math
def init_args():
parser = infer_args()
# params for output
parser.add_argument("--output", type=str, default="./output")
# params for table structure
parser.add_argument("--table_max_len", type=int, default=488)
parser.add_argument("--table_algorithm", type=str, default="TableAttn")
parser.add_argument("--table_model_dir", type=str)
parser.add_argument("--merge_no_span_structure", type=str2bool, default=True)
parser.add_argument(
"--table_char_dict_path",
type=str,
default="../ppocr/utils/dict/table_structure_dict_ch.txt",
)
# params for layout
parser.add_argument("--layout_model_dir", type=str)
parser.add_argument(
"--layout_dict_path",
type=str,
default="../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt",
)
parser.add_argument(
"--layout_score_threshold", type=float, default=0.5, help="Threshold of score."
)
parser.add_argument(
"--layout_nms_threshold", type=float, default=0.5, help="Threshold of nms."
)
# params for kie
parser.add_argument("--kie_algorithm", type=str, default="LayoutXLM")
parser.add_argument("--ser_model_dir", type=str)
parser.add_argument("--re_model_dir", type=str)
parser.add_argument("--use_visual_backbone", type=str2bool, default=True)
parser.add_argument(
"--ser_dict_path", type=str, default="../train_data/XFUND/class_list_xfun.txt"
)
# need to be None or tb-yx
parser.add_argument("--ocr_order_method", type=str, default=None)
# params for inference
parser.add_argument(
"--mode",
type=str,
choices=["structure", "kie"],
default="structure",
help="structure and kie is supported",
)
parser.add_argument(
"--image_orientation",
type=bool,
default=False,
help="Whether to enable image orientation recognition",
)
parser.add_argument(
"--layout",
type=str2bool,
default=True,
help="Whether to enable layout analysis",
)
parser.add_argument(
"--table",
type=str2bool,
default=True,
help="In the forward, whether the table area uses table recognition",
)
parser.add_argument(
"--ocr",
type=str2bool,
default=True,
help="In the forward, whether the non-table area is recognition by ocr",
)
# param for recovery
parser.add_argument(
"--recovery",
type=str2bool,
default=False,
help="Whether to enable layout of recovery",
)
parser.add_argument(
"--use_pdf2docx_api",
type=str2bool,
default=False,
help="Whether to use pdf2docx api",
)
parser.add_argument(
"--invert",
type=str2bool,
default=False,
help="Whether to invert image before processing",
)
parser.add_argument(
"--binarize",
type=str2bool,
default=False,
help="Whether to threshold binarize image before processing",
)
parser.add_argument(
"--alphacolor",
type=str2int_tuple,
default=(255, 255, 255),
help="Replacement color for the alpha channel, if the latter is present; R,G,B integers",
)
return parser
def parse_args():
parser = init_args()
return parser.parse_args()
def draw_structure_result(image, result, font_path):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
boxes, txts, scores = [], [], []
img_layout = image.copy()
draw_layout = ImageDraw.Draw(img_layout)
text_color = (255, 255, 255)
text_background_color = (80, 127, 255)
catid2color = {}
font_size = 15
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
for region in result:
if region["type"] not in catid2color:
box_color = (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255),
)
catid2color[region["type"]] = box_color
else:
box_color = catid2color[region["type"]]
box_layout = region["bbox"]
draw_layout.rectangle(
[(box_layout[0], box_layout[1]), (box_layout[2], box_layout[3])],
outline=box_color,
width=3,
)
if int(PIL.__version__.split(".")[0]) < 10:
text_w, text_h = font.getsize(region["type"])
else:
left, top, right, bottom = font.getbbox(region["type"])
text_w, text_h = right - left, bottom - top
draw_layout.rectangle(
[
(box_layout[0], box_layout[1]),
(box_layout[0] + text_w, box_layout[1] + text_h),
],
fill=text_background_color,
)
draw_layout.text(
(box_layout[0], box_layout[1]), region["type"], fill=text_color, font=font
)
if region["type"] == "table":
pass
else:
for text_result in region["res"]:
boxes.append(np.array(text_result["text_region"]))
txts.append(text_result["text"])
scores.append(text_result["confidence"])
if "text_word_region" in text_result:
for word_region in text_result["text_word_region"]:
char_box = word_region
box_height = int(
math.sqrt(
(char_box[0][0] - char_box[3][0]) ** 2
+ (char_box[0][1] - char_box[3][1]) ** 2
)
)
box_width = int(
math.sqrt(
(char_box[0][0] - char_box[1][0]) ** 2
+ (char_box[0][1] - char_box[1][1]) ** 2
)
)
if box_height == 0 or box_width == 0:
continue
boxes.append(word_region)
txts.append("")
scores.append(1.0)
im_show = draw_ocr_box_txt(
img_layout, boxes, txts, scores, font_path=font_path, drop_score=0
)
return im_show
def cal_ocr_word_box(rec_str, box, rec_word_info):
"""Calculate the detection frame for each word based on the results of recognition and detection of ocr"""
col_num, word_list, word_col_list, state_list = rec_word_info
box = box.tolist()
bbox_x_start = box[0][0]
bbox_x_end = box[1][0]
bbox_y_start = box[0][1]
bbox_y_end = box[2][1]
cell_width = (bbox_x_end - bbox_x_start) / col_num
word_box_list = []
word_box_content_list = []
cn_width_list = []
cn_col_list = []
for word, word_col, state in zip(word_list, word_col_list, state_list):
if state == "cn":
if len(word_col) != 1:
char_seq_length = (word_col[-1] - word_col[0] + 1) * cell_width
char_width = char_seq_length / (len(word_col) - 1)
cn_width_list.append(char_width)
cn_col_list += word_col
word_box_content_list += word
else:
cell_x_start = bbox_x_start + int(word_col[0] * cell_width)
cell_x_end = bbox_x_start + int((word_col[-1] + 1) * cell_width)
cell = (
(cell_x_start, bbox_y_start),
(cell_x_end, bbox_y_start),
(cell_x_end, bbox_y_end),
(cell_x_start, bbox_y_end),
)
word_box_list.append(cell)
word_box_content_list.append("".join(word))
if len(cn_col_list) != 0:
if len(cn_width_list) != 0:
avg_char_width = np.mean(cn_width_list)
else:
avg_char_width = (bbox_x_end - bbox_x_start) / len(rec_str)
for center_idx in cn_col_list:
center_x = (center_idx + 0.5) * cell_width
cell_x_start = max(int(center_x - avg_char_width / 2), 0) + bbox_x_start
cell_x_end = (
min(int(center_x + avg_char_width / 2), bbox_x_end - bbox_x_start)
+ bbox_x_start
)
cell = (
(cell_x_start, bbox_y_start),
(cell_x_end, bbox_y_start),
(cell_x_end, bbox_y_end),
(cell_x_start, bbox_y_end),
)
word_box_list.append(cell)
return word_box_content_list, word_box_list