46 lines
1.2 KiB
Python
46 lines
1.2 KiB
Python
# -*- coding: utf-8 -*-
|
||
# @Time : 2019/12/7 14:46
|
||
# @Author : zhoujun
|
||
|
||
import numpy as np
|
||
import cv2
|
||
import os
|
||
import random
|
||
from tqdm import tqdm
|
||
# calculate means and std
|
||
train_txt_path = './train_val_list.txt'
|
||
|
||
CNum = 10000 # 挑选多少图片进行计算
|
||
|
||
img_h, img_w = 640, 640
|
||
imgs = np.zeros([img_w, img_h, 3, 1])
|
||
means, stdevs = [], []
|
||
|
||
with open(train_txt_path, 'r') as f:
|
||
lines = f.readlines()
|
||
random.shuffle(lines) # shuffle , 随机挑选图片
|
||
|
||
for i in tqdm(range(CNum)):
|
||
img_path = lines[i].split('\t')[0]
|
||
|
||
img = cv2.imread(img_path)
|
||
img = cv2.resize(img, (img_h, img_w))
|
||
img = img[:, :, :, np.newaxis]
|
||
|
||
imgs = np.concatenate((imgs, img), axis=3)
|
||
# print(i)
|
||
|
||
imgs = imgs.astype(np.float32) / 255.
|
||
|
||
for i in tqdm(range(3)):
|
||
pixels = imgs[:, :, i, :].ravel() # 拉成一行
|
||
means.append(np.mean(pixels))
|
||
stdevs.append(np.std(pixels))
|
||
|
||
# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
|
||
means.reverse() # BGR --> RGB
|
||
stdevs.reverse()
|
||
|
||
print("normMean = {}".format(means))
|
||
print("normStd = {}".format(stdevs))
|
||
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs)) |