59 lines
2.0 KiB
Python
59 lines
2.0 KiB
Python
# Adapted from score written by wkentaro
|
|
# https://github.com/wkentaro/pytorch-fcn/blob/master/torchfcn/utils.py
|
|
|
|
import numpy as np
|
|
|
|
|
|
class runningScore(object):
|
|
def __init__(self, n_classes):
|
|
self.n_classes = n_classes
|
|
self.confusion_matrix = np.zeros((n_classes, n_classes))
|
|
|
|
def _fast_hist(self, label_true, label_pred, n_class):
|
|
mask = (label_true >= 0) & (label_true < n_class)
|
|
|
|
if np.sum((label_pred[mask] < 0)) > 0:
|
|
print(label_pred[label_pred < 0])
|
|
hist = np.bincount(
|
|
n_class * label_true[mask].astype(int) + label_pred[mask],
|
|
minlength=n_class**2).reshape(n_class, n_class)
|
|
return hist
|
|
|
|
def update(self, label_trues, label_preds):
|
|
# print label_trues.dtype, label_preds.dtype
|
|
for lt, lp in zip(label_trues, label_preds):
|
|
try:
|
|
self.confusion_matrix += self._fast_hist(lt.flatten(),
|
|
lp.flatten(),
|
|
self.n_classes)
|
|
except:
|
|
pass
|
|
|
|
def get_scores(self):
|
|
"""Returns accuracy score evaluation result.
|
|
- overall accuracy
|
|
- mean accuracy
|
|
- mean IU
|
|
- fwavacc
|
|
"""
|
|
hist = self.confusion_matrix
|
|
acc = np.diag(hist).sum() / (hist.sum() + 0.0001)
|
|
acc_cls = np.diag(hist) / (hist.sum(axis=1) + 0.0001)
|
|
acc_cls = np.nanmean(acc_cls)
|
|
iu = np.diag(hist) / (
|
|
hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist) + 0.0001)
|
|
mean_iu = np.nanmean(iu)
|
|
freq = hist.sum(axis=1) / (hist.sum() + 0.0001)
|
|
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
|
|
cls_iu = dict(zip(range(self.n_classes), iu))
|
|
|
|
return {
|
|
'Overall Acc': acc,
|
|
'Mean Acc': acc_cls,
|
|
'FreqW Acc': fwavacc,
|
|
'Mean IoU': mean_iu,
|
|
}, cls_iu
|
|
|
|
def reset(self):
|
|
self.confusion_matrix = np.zeros((self.n_classes, self.n_classes))
|