PaddleOCR/ppstructure/docs/quickstart.md

200 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# PP-Structure 快速开始
- [1. 安装依赖包](#1)
- [2. 便捷使用](#2)
- [2.1 命令行使用](#21)
- [2.1.1 版面分析+表格识别](#211)
- [2.1.2 版面分析](#212)
- [2.1.3 表格识别](#213)
- [2.1.4 DocVQA](#214)
- [2.2 代码使用](#22)
- [2.2.1 版面分析+表格识别](#221)
- [2.2.2 版面分析](#222)
- [2.2.3 表格识别](#223)
- [2.2.4 DocVQA](#224)
- [2.3 返回结果说明](#23)
- [2.3.1 版面分析+表格识别](#231)
- [2.3.2 DocVQA](#232)
- [2.4 参数说明](#24)
<a name="1"></a>
## 1. 安装依赖包
```bash
# 安装 paddleocr推荐使用2.5+版本
pip3 install "paddleocr>=2.5"
# 安装 版面分析依赖包layoutparser如不需要版面分析功能可跳过
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
# 安装 DocVQA依赖包paddlenlp如不需要DocVQA功能可跳过
pip install paddlenlp
```
<a name="2"></a>
## 2. 便捷使用
<a name="21"></a>
### 2.1 命令行使用
<a name="211"></a>
#### 2.1.1 版面分析+表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
```
<a name="212"></a>
#### 2.1.2 版面分析
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
```
<a name="213"></a>
#### 2.1.3 表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```
<a name="214"></a>
#### 2.1.4 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
<a name="22"></a>
### 2.2 代码使用
<a name="221"></a>
#### 2.2.1 版面分析+表格识别
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
<a name="222"></a>
#### 2.2.2 版面分析
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(table=False, ocr=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
```
<a name="223"></a>
#### 2.2.3 表格识别
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(layout=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
```
<a name="224"></a>
#### 2.2.4 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
<a name="23"></a>
### 2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list示例如下
<a name="231"></a>
#### 2.3.1 版面分析+表格识别
```shell
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
dict 里各个字段说明如下
| 字段 | 说明 |
| --------------- |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|type| 图片区域的类型 |
|bbox| 图片区域的在原图的坐标,分别[左上角x左上角y右下角x右下角y] |
|res| 图片区域的OCR或表格识别结果。<br> 表格: 一个dict字段说明如下<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: 表格的HTML字符串<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; 在代码使用模式下前向传入return_ocr_result_in_table=True可以拿到表格中每个文本的检测识别结果对应为如下字段: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: 文本检测坐标<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: 文本识别结果。<br> OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录图片里的每个表格会存储为一个excel图片区域会被裁剪之后保存下来excel文件和图片名为表格在图片里的坐标。
```
/output/table/1/
└─ res.txt
└─ [454, 360, 824, 658].xlsx 表格识别结果
└─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
└─ [17, 361, 404, 711].xlsx 表格识别结果
```
<a name="232"></a>
#### 2.3.2 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
<a name="24"></a>
### 2.4 参数说明
| 字段 | 说明 | 默认值 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| output | excel和识别结果保存的地址 | ./output/table |
| table_max_len | 表格结构模型预测时图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址 | None |
| table_char_dict_path | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
| layout_path_model | 版面分析模型模型地址,可以为在线地址或者本地地址,当为本地地址时,需要指定 layout_label_map, 命令行模式下可通过--layout_label_map='{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}' 指定 | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config |
| layout_label_map | 版面分析模型模型label映射字典 | None |
| model_name_or_path | VQA SER模型地址 | None |
| max_seq_length | VQA SER模型最大支持token长度 | 512 |
| label_map_path | VQA SER 标签文件地址 | ./vqa/labels/labels_ser.txt |
| layout | 前向中是否执行版面分析 | True |
| table | 前向中是否执行表格识别 | True |
| ocr | 对于版面分析中的非表格区域是否执行ocr。当layout为False时会被自动设置为False | True |
| structure_version | 表格结构化模型版本,可选 PP-STRUCTURE。PP-STRUCTURE支持表格结构化模型 | PP-STRUCTURE |
大部分参数和PaddleOCR whl包保持一致见 [whl包文档](../../doc/doc_ch/whl.md)