3.7 KiB
SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition
- 1. Introduction
- 2. Environment
- 3. Model Training / Evaluation / Prediction
- 4. Inference and Deployment
- 5. FAQ
1. Introduction
Paper:
SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition Chengwei Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Fei Wu, Futai Zou AAAI, 2020
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets. The algorithm reproduction effect is as follows:
Model | Backbone | config | Acc | Download link |
---|---|---|---|---|
SPIN | ResNet32 | rec_r32_gaspin_bilstm_att.yml | 90.00% | trained model |
2. Environment
Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.
3. Model Training / Evaluation / Prediction
Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml
Evaluation:
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
Prediction:
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
4. Inference and Deployment
4.1 Python Inference
First, the model saved during the SPIN text recognition training process is converted into an inference model. you can use the following command to convert:
python3 tools/export_model.py -c configs/rec/rec_r32_gaspin_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r32_gaspin_bilstm_att
For SPIN text recognition model inference, the following commands can be executed:
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r32_gaspin_bilstm_att/" --rec_image_shape="3, 32, 100" --rec_algorithm="SPIN" --rec_char_dict_path="/ppocr/utils/dict/spin_dict.txt" --use_space_char=False
4.2 C++ Inference
Not supported
4.3 Serving
Not supported
4.4 More
Not supported
5. FAQ
Citation
@article{2020SPIN,
title={SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition},
author={Chengwei Zhang and Yunlu Xu and Zhanzhan Cheng and Shiliang Pu and Yi Niu and Fei Wu and Futai Zou},
journal={AAAI2020},
year={2020},
}