yunyaoXYY a27bb180cf
[FastDeploy] Add FastDeploy support to deploy PaddleOCR models. (#9260)
* Fix padding value in rec model, and box sort in det model

* Add FastDeploy support to deploy PaddleOCR models.

* Improve readme

* improve readme
2023-03-03 14:51:09 +08:00

145 lines
4.2 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
if args.device == "npu":
det_option.use_rknpu2()
cls_option.use_rknpu2()
rec_option.use_rknpu2()
return det_option, cls_option, rec_option
def build_format(args):
det_format = fd.ModelFormat.ONNX
cls_format = fd.ModelFormat.ONNX
rec_format = fd.ModelFormat.ONNX
if args.device == "npu":
det_format = fd.ModelFormat.RKNN
cls_format = fd.ModelFormat.RKNN
rec_format = fd.ModelFormat.RKNN
return det_format, cls_format, rec_format
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = args.det_model
det_params_file = ""
# Classification模型方向分类可选
cls_model_file = args.cls_model
cls_params_file = ""
# Recognition模型文字识别模型
rec_model_file = args.rec_model
rec_params_file = ""
rec_label_file = args.rec_label_file
det_option, cls_option, rec_option = build_option(args)
det_format, cls_format, rec_format = build_format(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file,
det_params_file,
runtime_option=det_option,
model_format=det_format)
cls_model = fd.vision.ocr.Classifier(
cls_model_file,
cls_params_file,
runtime_option=cls_option,
model_format=cls_format)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file,
rec_params_file,
rec_label_file,
runtime_option=rec_option,
model_format=rec_format)
# Det,Rec模型启用静态shape推理
det_model.preprocessor.static_shape_infer = True
rec_model.preprocessor.static_shape_infer = True
if args.device == "npu":
det_model.preprocessor.disable_normalize()
det_model.preprocessor.disable_permute()
cls_model.preprocessor.disable_normalize()
cls_model.preprocessor.disable_permute()
rec_model.preprocessor.disable_normalize()
rec_model.preprocessor.disable_permute()
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
ppocr_v3.cls_batch_size = 1
ppocr_v3.rec_batch_size = 1
# 预测图片准备
im = cv2.imread(args.image)
#预测并打印结果
result = ppocr_v3.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")