PaddleOCR/ppocr/data/imaug/vqa/token/vqa_token_pad.py

105 lines
4.6 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import numpy as np
class VQATokenPad(object):
def __init__(self,
max_seq_len=512,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_token_type_ids=True,
truncation_strategy="longest_first",
return_overflowing_tokens=False,
return_special_tokens_mask=False,
infer_mode=False,
**kwargs):
self.max_seq_len = max_seq_len
self.pad_to_max_seq_len = max_seq_len
self.return_attention_mask = return_attention_mask
self.return_token_type_ids = return_token_type_ids
self.truncation_strategy = truncation_strategy
self.return_overflowing_tokens = return_overflowing_tokens
self.return_special_tokens_mask = return_special_tokens_mask
self.pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index
self.infer_mode = infer_mode
def __call__(self, data):
needs_to_be_padded = self.pad_to_max_seq_len and len(data[
"input_ids"]) < self.max_seq_len
if needs_to_be_padded:
if 'tokenizer_params' in data:
tokenizer_params = data.pop('tokenizer_params')
else:
tokenizer_params = dict(
padding_side='right', pad_token_type_id=0, pad_token_id=1)
difference = self.max_seq_len - len(data["input_ids"])
if tokenizer_params['padding_side'] == 'right':
if self.return_attention_mask:
data["attention_mask"] = [1] * len(data[
"input_ids"]) + [0] * difference
if self.return_token_type_ids:
data["token_type_ids"] = (
data["token_type_ids"] +
[tokenizer_params['pad_token_type_id']] * difference)
if self.return_special_tokens_mask:
data["special_tokens_mask"] = data[
"special_tokens_mask"] + [1] * difference
data["input_ids"] = data["input_ids"] + [
tokenizer_params['pad_token_id']
] * difference
if not self.infer_mode:
data["labels"] = data[
"labels"] + [self.pad_token_label_id] * difference
data["bbox"] = data["bbox"] + [[0, 0, 0, 0]] * difference
elif tokenizer_params['padding_side'] == 'left':
if self.return_attention_mask:
data["attention_mask"] = [0] * difference + [
1
] * len(data["input_ids"])
if self.return_token_type_ids:
data["token_type_ids"] = (
[tokenizer_params['pad_token_type_id']] * difference +
data["token_type_ids"])
if self.return_special_tokens_mask:
data["special_tokens_mask"] = [
1
] * difference + data["special_tokens_mask"]
data["input_ids"] = [tokenizer_params['pad_token_id']
] * difference + data["input_ids"]
if not self.infer_mode:
data["labels"] = [self.pad_token_label_id
] * difference + data["labels"]
data["bbox"] = [[0, 0, 0, 0]] * difference + data["bbox"]
else:
if self.return_attention_mask:
data["attention_mask"] = [1] * len(data["input_ids"])
for key in data:
if key in [
'input_ids', 'labels', 'token_type_ids', 'bbox',
'attention_mask'
]:
if self.infer_mode:
if key != 'labels':
length = min(len(data[key]), self.max_seq_len)
data[key] = data[key][:length]
else:
continue
data[key] = np.array(data[key], dtype='int64')
return data