PaddleOCR/benchmark/PaddleOCR_DBNet/models/neck/FPN.py

85 lines
2.6 KiB
Python

# -*- coding: utf-8 -*-
# @Time : 2019/9/13 10:29
# @Author : zhoujun
import paddle
import paddle.nn.functional as F
from paddle import nn
from models.basic import ConvBnRelu
class FPN(nn.Layer):
def __init__(self, in_channels, inner_channels=256, **kwargs):
"""
:param in_channels: 基础网络输出的维度
:param kwargs:
"""
super().__init__()
inplace = True
self.conv_out = inner_channels
inner_channels = inner_channels // 4
# reduce layers
self.reduce_conv_c2 = ConvBnRelu(
in_channels[0], inner_channels, kernel_size=1, inplace=inplace)
self.reduce_conv_c3 = ConvBnRelu(
in_channels[1], inner_channels, kernel_size=1, inplace=inplace)
self.reduce_conv_c4 = ConvBnRelu(
in_channels[2], inner_channels, kernel_size=1, inplace=inplace)
self.reduce_conv_c5 = ConvBnRelu(
in_channels[3], inner_channels, kernel_size=1, inplace=inplace)
# Smooth layers
self.smooth_p4 = ConvBnRelu(
inner_channels,
inner_channels,
kernel_size=3,
padding=1,
inplace=inplace)
self.smooth_p3 = ConvBnRelu(
inner_channels,
inner_channels,
kernel_size=3,
padding=1,
inplace=inplace)
self.smooth_p2 = ConvBnRelu(
inner_channels,
inner_channels,
kernel_size=3,
padding=1,
inplace=inplace)
self.conv = nn.Sequential(
nn.Conv2D(
self.conv_out,
self.conv_out,
kernel_size=3,
padding=1,
stride=1),
nn.BatchNorm2D(self.conv_out),
nn.ReLU())
self.out_channels = self.conv_out
def forward(self, x):
c2, c3, c4, c5 = x
# Top-down
p5 = self.reduce_conv_c5(c5)
p4 = self._upsample_add(p5, self.reduce_conv_c4(c4))
p4 = self.smooth_p4(p4)
p3 = self._upsample_add(p4, self.reduce_conv_c3(c3))
p3 = self.smooth_p3(p3)
p2 = self._upsample_add(p3, self.reduce_conv_c2(c2))
p2 = self.smooth_p2(p2)
x = self._upsample_cat(p2, p3, p4, p5)
x = self.conv(x)
return x
def _upsample_add(self, x, y):
return F.interpolate(x, size=y.shape[2:]) + y
def _upsample_cat(self, p2, p3, p4, p5):
h, w = p2.shape[2:]
p3 = F.interpolate(p3, size=(h, w))
p4 = F.interpolate(p4, size=(h, w))
p5 = F.interpolate(p5, size=(h, w))
return paddle.concat([p2, p3, p4, p5], axis=1)