137 lines
5.1 KiB
C++
137 lines
5.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void InitAndInfer(const std::string &det_model_dir,
|
|
const std::string &rec_label_file,
|
|
const std::string &image_file,
|
|
const fastdeploy::RuntimeOption &option) {
|
|
auto det_model_file =
|
|
det_model_dir + sep + "ch_PP-OCRv3_det_1684x_f32.bmodel";
|
|
auto det_params_file = det_model_dir + sep + "";
|
|
|
|
auto cls_model_file =
|
|
det_model_dir + sep + "ch_ppocr_mobile_v2.0_cls_1684x_f32.bmodel";
|
|
auto cls_params_file = det_model_dir + sep + "";
|
|
|
|
auto rec_model_file =
|
|
det_model_dir + sep + "ch_PP-OCRv3_rec_1684x_f32.bmodel";
|
|
auto rec_params_file = det_model_dir + sep + "";
|
|
|
|
auto format = fastdeploy::ModelFormat::SOPHGO;
|
|
|
|
auto det_option = option;
|
|
auto cls_option = option;
|
|
auto rec_option = option;
|
|
|
|
// The cls and rec model can inference a batch of images now.
|
|
// User could initialize the inference batch size and set them after create
|
|
// PPOCR model.
|
|
int cls_batch_size = 1;
|
|
int rec_batch_size = 1;
|
|
|
|
// If use TRT backend, the dynamic shape will be set as follow.
|
|
// We recommend that users set the length and height of the detection model to
|
|
// a multiple of 32. We also recommend that users set the Trt input shape as
|
|
// follow.
|
|
det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
|
|
{1, 3, 960, 960});
|
|
cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320},
|
|
{cls_batch_size, 3, 48, 1024});
|
|
rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
|
|
{rec_batch_size, 3, 48, 2304});
|
|
|
|
// Users could save TRT cache file to disk as follow.
|
|
// det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
|
|
// cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
|
|
// rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");
|
|
|
|
auto det_model = fastdeploy::vision::ocr::DBDetector(
|
|
det_model_file, det_params_file, det_option, format);
|
|
auto cls_model = fastdeploy::vision::ocr::Classifier(
|
|
cls_model_file, cls_params_file, cls_option, format);
|
|
auto rec_model = fastdeploy::vision::ocr::Recognizer(
|
|
rec_model_file, rec_params_file, rec_label_file, rec_option, format);
|
|
|
|
// Users could enable static shape infer for rec model when deploy PP-OCR on
|
|
// hardware which can not support dynamic shape infer well, like Huawei Ascend
|
|
// series.
|
|
rec_model.GetPreprocessor().SetStaticShapeInfer(true);
|
|
rec_model.GetPreprocessor().SetRecImageShape({3, 48, 584});
|
|
|
|
assert(det_model.Initialized());
|
|
assert(cls_model.Initialized());
|
|
assert(rec_model.Initialized());
|
|
|
|
// The classification model is optional, so the PP-OCR can also be connected
|
|
// in series as follows auto ppocr_v3 =
|
|
// fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
|
|
auto ppocr_v3 =
|
|
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
|
|
|
|
// Set inference batch size for cls model and rec model, the value could be -1
|
|
// and 1 to positive infinity. When inference batch size is set to -1, it
|
|
// means that the inference batch size of the cls and rec models will be the
|
|
// same as the number of boxes detected by the det model.
|
|
ppocr_v3.SetClsBatchSize(cls_batch_size);
|
|
ppocr_v3.SetRecBatchSize(rec_batch_size);
|
|
|
|
if (!ppocr_v3.Initialized()) {
|
|
std::cerr << "Failed to initialize PP-OCR." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
auto im_bak = im.clone();
|
|
|
|
fastdeploy::vision::OCRResult result;
|
|
if (!ppocr_v3.Predict(&im, &result)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::cout << result.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/model "
|
|
"path/to/rec_label_file path/to/image "
|
|
"e.g ./infer_demo ./ocr_bmodel "
|
|
"./ppocr_keys_v1.txt ./12.jpg"
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption option;
|
|
option.UseSophgo();
|
|
option.UseSophgoBackend();
|
|
|
|
std::string model_dir = argv[1];
|
|
std::string rec_label_file = argv[2];
|
|
std::string test_image = argv[3];
|
|
InitAndInfer(model_dir, rec_label_file, test_image, option);
|
|
return 0;
|
|
}
|