PaddleOCR/doc/doc_ch/algorithm_rec_srn.md

3.6 KiB
Raw Blame History

SRN

1. 算法简介

论文信息:

Towards Accurate Scene Text Recognition with Semantic Reasoning Networks Deli Yu, Xuan Li, Chengquan Zhang, Junyu Han, Jingtuo Liu, Errui Ding CVPR,2020

使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法复现效果如下

模型 骨干网络 配置文件 Acc 下载链接
SRN Resnet50_vd_fpn rec_r50_fpn_srn.yml 86.31% 训练模型

2. 环境配置

请先参考《运行环境准备》配置PaddleOCR运行环境参考《项目克隆》克隆项目代码。

3. 模型训练、评估、预测

请参考文本识别教程。PaddleOCR对代码进行了模块化训练不同的识别模型只需要更换配置文件即可。

训练

具体地,在完成数据准备后,便可以启动训练,训练命令如下:

#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r50_fpn_srn.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r50_fpn_srn.yml

评估

# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy

预测:

# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png

4. 推理部署

4.1 Python推理

首先将SRN文本识别训练过程中保存的模型转换成inference model。 模型下载地址 ),可以使用如下命令进行转换:

python3 tools/export_model.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model=./rec_r50_vd_srn_train/best_accuracy  Global.save_inference_dir=./inference/rec_srn

SRN文本识别模型推理可以执行如下命令

python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_srn/" --rec_image_shape="1,64,256"  --rec_algorithm="SRN" --rec_char_dict_path=./ppocr/utils/ic15_dict.txt  --use_space_char=False

4.2 C++推理

由于C++预处理后处理还未支持SRN所以暂未支持

4.3 Serving服务化部署

暂不支持

4.4 更多推理部署

暂不支持

5. FAQ

引用

@article{Yu2020TowardsAS,
  title={Towards Accurate Scene Text Recognition With Semantic Reasoning Networks},
  author={Deli Yu and Xuan Li and Chengquan Zhang and Junyu Han and Jingtuo Liu and Errui Ding},
  journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020},
  pages={12110-12119}
}