167 lines
5.0 KiB
C++
167 lines
5.0 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "paddle_api.h"
|
|
#include "paddle_inference_api.h"
|
|
#include <chrono>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <ostream>
|
|
#include <vector>
|
|
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
#include <include/preprocess_op.h>
|
|
|
|
namespace PaddleOCR {
|
|
|
|
void Permute::Run(const cv::Mat *im, float *data) {
|
|
int rh = im->rows;
|
|
int rw = im->cols;
|
|
int rc = im->channels();
|
|
for (int i = 0; i < rc; ++i) {
|
|
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
|
|
}
|
|
}
|
|
|
|
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
|
|
const std::vector<float> &scale, const bool is_scale) {
|
|
double e = 1.0;
|
|
if (is_scale) {
|
|
e /= 255.0;
|
|
}
|
|
(*im).convertTo(*im, CV_32FC3, e);
|
|
for (int h = 0; h < im->rows; h++) {
|
|
for (int w = 0; w < im->cols; w++) {
|
|
im->at<cv::Vec3f>(h, w)[0] =
|
|
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) * scale[0];
|
|
im->at<cv::Vec3f>(h, w)[1] =
|
|
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) * scale[1];
|
|
im->at<cv::Vec3f>(h, w)[2] =
|
|
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) * scale[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
|
|
int max_size_len, float &ratio_h, float &ratio_w,
|
|
bool use_tensorrt) {
|
|
int w = img.cols;
|
|
int h = img.rows;
|
|
|
|
float ratio = 1.f;
|
|
int max_wh = w >= h ? w : h;
|
|
if (max_wh > max_size_len) {
|
|
if (h > w) {
|
|
ratio = float(max_size_len) / float(h);
|
|
} else {
|
|
ratio = float(max_size_len) / float(w);
|
|
}
|
|
}
|
|
|
|
int resize_h = int(float(h) * ratio);
|
|
int resize_w = int(float(w) * ratio);
|
|
if (resize_h % 32 == 0)
|
|
resize_h = resize_h;
|
|
else if (resize_h / 32 < 1 + 1e-5)
|
|
resize_h = 32;
|
|
else
|
|
resize_h = (resize_h / 32) * 32;
|
|
|
|
if (resize_w % 32 == 0)
|
|
resize_w = resize_w;
|
|
else if (resize_w / 32 < 1 + 1e-5)
|
|
resize_w = 32;
|
|
else
|
|
resize_w = (resize_w / 32) * 32;
|
|
if (!use_tensorrt) {
|
|
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
|
ratio_h = float(resize_h) / float(h);
|
|
ratio_w = float(resize_w) / float(w);
|
|
} else {
|
|
cv::resize(img, resize_img, cv::Size(640, 640));
|
|
ratio_h = float(640) / float(h);
|
|
ratio_w = float(640) / float(w);
|
|
}
|
|
}
|
|
|
|
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
|
bool use_tensorrt,
|
|
const std::vector<int> &rec_image_shape) {
|
|
int imgC, imgH, imgW;
|
|
imgC = rec_image_shape[0];
|
|
imgH = rec_image_shape[1];
|
|
imgW = rec_image_shape[2];
|
|
|
|
imgW = int(32 * wh_ratio);
|
|
|
|
float ratio = float(img.cols) / float(img.rows);
|
|
int resize_w, resize_h;
|
|
if (ceilf(imgH * ratio) > imgW)
|
|
resize_w = imgW;
|
|
else
|
|
resize_w = int(ceilf(imgH * ratio));
|
|
if (!use_tensorrt) {
|
|
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
|
cv::INTER_LINEAR);
|
|
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
|
|
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
|
|
{127, 127, 127});
|
|
} else {
|
|
int k = int(img.cols * 32 / img.rows);
|
|
if (k >= 100) {
|
|
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f,
|
|
cv::INTER_LINEAR);
|
|
} else {
|
|
cv::resize(img, resize_img, cv::Size(k, 32), 0.f, 0.f, cv::INTER_LINEAR);
|
|
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(100 - k),
|
|
cv::BORDER_CONSTANT, {127, 127, 127});
|
|
}
|
|
}
|
|
}
|
|
|
|
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
|
bool use_tensorrt,
|
|
const std::vector<int> &rec_image_shape) {
|
|
int imgC, imgH, imgW;
|
|
imgC = rec_image_shape[0];
|
|
imgH = rec_image_shape[1];
|
|
imgW = rec_image_shape[2];
|
|
|
|
float ratio = float(img.cols) / float(img.rows);
|
|
int resize_w, resize_h;
|
|
if (ceilf(imgH * ratio) > imgW)
|
|
resize_w = imgW;
|
|
else
|
|
resize_w = int(ceilf(imgH * ratio));
|
|
|
|
if (!use_tensorrt) {
|
|
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
|
cv::INTER_LINEAR);
|
|
if (resize_w < imgW) {
|
|
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
|
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
|
}
|
|
} else {
|
|
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f, cv::INTER_LINEAR);
|
|
}
|
|
}
|
|
|
|
} // namespace PaddleOCR
|