mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
* docs: Add a new document site * docs: Update comment setting * chore(pre-commit): Remove rules of md and remove the size limits of 512kb * chore(format): Run pre-commit in local * ci(document): Change the default name of building document site. * chore: Update .pre-commit-config.yaml
41 lines
1.8 KiB
Markdown
41 lines
1.8 KiB
Markdown
---
|
||
comments: true
|
||
---
|
||
|
||
|
||
# Table Recognition Datasets
|
||
|
||
Here are the commonly used table recognition datasets, which are being updated continuously. Welcome to contribute datasets~
|
||
|
||
## Dataset Summary
|
||
|
||
| dataset | Image download link | PPOCR format annotation download link |
|
||
|---|---|---|
|
||
| PubTabNet |<https://github.com/ibm-aur-nlp/PubTabNet>| jsonl format, which can be loaded directly with [pubtab_dataset.py](../../../ppocr/data/pubtab_dataset.py) |
|
||
| TAL Table Recognition Competition Dataset |<https://ai.100tal.com/dataset>| jsonl format, which can be loaded directly with [pubtab_dataset.py](../../../ppocr/data/pubtab_dataset.py) |
|
||
| WTW Chinese scene table dataset |<https://github.com/wangwen-whu/WTW-Dataset>| Conversion is required to load with [pubtab_dataset.py](../../../ppocr/data/pubtab_dataset.py)|
|
||
|
||
## 1. PubTabNet
|
||
|
||
- **Data Introduction**:The training set of the PubTabNet dataset contains 500,000 images and the validation set contains 9000 images. Part of the image visualization is shown below.
|
||
|
||

|
||
|
||

|
||
|
||
- **illustrate**:When using this dataset, the [CDLA-Permissive](https://cdla.io/permissive-1-0/) protocol is required.
|
||
|
||
## 2. TAL Table Recognition Competition Dataset
|
||
|
||
- **Data Introduction**:The training set of the TAL table recognition competition dataset contains 16,000 images. The validation set does not give trainable annotations.
|
||
|
||

|
||
|
||

|
||
|
||
## 3. WTW Chinese scene table dataset
|
||
|
||
- **Data Introduction**:The WTW Chinese scene table dataset consists of two parts: table detection and table data. The dataset contains images of two scenes, scanned and photographed.
|
||
|
||

|