mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
49 lines
1.8 KiB
Python
49 lines
1.8 KiB
Python
import paddle
|
|
import numpy as np
|
|
import os
|
|
import paddle.nn as nn
|
|
import paddleslim
|
|
|
|
|
|
class PACT(paddle.nn.Layer):
|
|
def __init__(self):
|
|
super(PACT, self).__init__()
|
|
alpha_attr = paddle.ParamAttr(
|
|
name=self.full_name() + ".pact",
|
|
initializer=paddle.nn.initializer.Constant(value=20),
|
|
learning_rate=1.0,
|
|
regularizer=paddle.regularizer.L2Decay(2e-5))
|
|
|
|
self.alpha = self.create_parameter(
|
|
shape=[1], attr=alpha_attr, dtype='float32')
|
|
|
|
def forward(self, x):
|
|
out_left = paddle.nn.functional.relu(x - self.alpha)
|
|
out_right = paddle.nn.functional.relu(-self.alpha - x)
|
|
x = x - out_left + out_right
|
|
return x
|
|
|
|
|
|
quant_config = {
|
|
# weight preprocess type, default is None and no preprocessing is performed.
|
|
'weight_preprocess_type': None,
|
|
# activation preprocess type, default is None and no preprocessing is performed.
|
|
'activation_preprocess_type': None,
|
|
# weight quantize type, default is 'channel_wise_abs_max'
|
|
'weight_quantize_type': 'channel_wise_abs_max',
|
|
# activation quantize type, default is 'moving_average_abs_max'
|
|
'activation_quantize_type': 'moving_average_abs_max',
|
|
# weight quantize bit num, default is 8
|
|
'weight_bits': 8,
|
|
# activation quantize bit num, default is 8
|
|
'activation_bits': 8,
|
|
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
|
'dtype': 'int8',
|
|
# window size for 'range_abs_max' quantization. default is 10000
|
|
'window_size': 10000,
|
|
# The decay coefficient of moving average, default is 0.9
|
|
'moving_rate': 0.9,
|
|
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
|
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
|
}
|