83 lines
2.7 KiB
C++
83 lines
2.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void InitAndInfer(const std::string &det_model_dir,
|
|
const std::string &image_file,
|
|
const fastdeploy::RuntimeOption &option) {
|
|
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
|
|
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
|
|
auto det_option = option;
|
|
|
|
auto det_model = fastdeploy::vision::ocr::DBDetector(
|
|
det_model_file, det_params_file, det_option);
|
|
assert(det_model.Initialized());
|
|
|
|
// Parameters settings for pre and post processing of Det Model.
|
|
det_model.GetPreprocessor().SetMaxSideLen(960);
|
|
det_model.GetPostprocessor().SetDetDBThresh(0.3);
|
|
det_model.GetPostprocessor().SetDetDBBoxThresh(0.6);
|
|
det_model.GetPostprocessor().SetDetDBUnclipRatio(1.5);
|
|
det_model.GetPostprocessor().SetDetDBScoreMode("slow");
|
|
det_model.GetPostprocessor().SetUseDilation(0);
|
|
|
|
auto im = cv::imread(image_file);
|
|
auto im_bak = im.clone();
|
|
|
|
fastdeploy::vision::OCRResult result;
|
|
if (!det_model.Predict(im, &result)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::cout << result.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/det_model path/to/image "
|
|
"run_option, "
|
|
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer ./12.jpg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu;."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption option;
|
|
int flag = std::atoi(argv[3]);
|
|
|
|
if (flag == 0) {
|
|
option.UseCpu();
|
|
} else if (flag == 1) {
|
|
option.UseGpu();
|
|
}
|
|
|
|
std::string det_model_dir = argv[1];
|
|
std::string test_image = argv[2];
|
|
InitAndInfer(det_model_dir, test_image, option);
|
|
return 0;
|
|
}
|