PaddleOCR/deploy/fastdeploy/cpu-gpu/python/README.md

154 lines
9.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

[English](README.md) | 简体中文
# PaddleOCR CPU-GPU Python部署示例
本目录下提供`infer.py`快速完成PP-OCRv3在CPU/GPU以及GPU上通过Paddle-TensorRT加速部署的示例.
## 1. 说明
PaddleOCR支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署OCR模型
## 2. 部署环境准备
在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库.
## 3. 部署模型准备
在部署前, 请准备好您所需要运行的推理模型, 您可以在[FastDeploy支持的PaddleOCR模型列表](../README.md)中下载所需模型.
## 4. 运行部署示例
```bash
# 安装FastDpeloy python包详细文档请参考`部署环境准备`
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/ocr/PP-OCR/cpu-gpu/python
# 如果您希望从PaddleOCR下载示例代码请运行
git clone https://github.com/PaddlePaddle/PaddleOCR.git
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到dygraph分支
git checkout dygraph
cd PaddleOCR/deploy/fastdeploy/cpu-gpu/python
# 下载PP-OCRv3文字检测模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar
# 下载文字方向分类器模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
# 下载PP-OCRv3文字识别模型
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar
# 下载预测图片与字典文件
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# 运行部署示例
# 在CPU上使用Paddle Inference推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device cpu --backend paddle
# 在CPU上使用OenVINO推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device cpu --backend openvino
# 在CPU上使用ONNX Runtime推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device cpu --backend ort
# 在CPU上使用Paddle Lite推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device cpu --backend pplite
# 在GPU上使用Paddle Inference推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend paddle
# 在GPU上使用Paddle TensorRT推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend pptrt
# 在GPU上使用ONNX Runtime推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend ort
# 在GPU上使用Nvidia TensorRT推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt
# 同时, FastDeploy提供文字检测,文字分类,文字识别三个模型的单独推理,
# 有需要的用户, 请准备合适的图片, 同时根据自己的需求, 参考infer.py来配置自定义硬件与推理后端.
# 在CPU上,单独使用文字检测模型部署
python infer_det.py --det_model ch_PP-OCRv3_det_infer --image 12.jpg --device cpu
# 在CPU上,单独使用文字方向分类模型部署
python infer_cls.py --cls_model ch_ppocr_mobile_v2.0_cls_infer --image 12.jpg --device cpu
# 在CPU上,单独使用文字识别模型部署
python infer_rec.py --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device cpu
```
运行完成可视化结果如下图所示
<div align="center">
<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">
</div>
## 5. 部署示例选项说明
|参数|含义|默认值
|---|---|---|
|--det_model|指定检测模型文件夹所在的路径|None|
|--cls_model|指定分类模型文件夹所在的路径|None|
|--rec_model|指定识别模型文件夹所在的路径|None|
|--rec_label_file|识别模型所需label所在的路径|None|
|--image|指定测试图片所在的路径|None|
|--device|指定即将运行的硬件类型,支持的值为`[cpu, gpu]`当设置为cpu时可运行在x86 cpu/arm cpu等cpu上|cpu|
|--device_id|使用gpu时, 指定设备号|0|
|--backend|部署模型时使用的后端, 支持的值为`[paddle,pptrt,pplite,ort,openvino,trt]` |paddle|
关于如何通过FastDeploy使用更多不同的推理后端以及如何使用不同的硬件请参考文档[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
## 6. 更多指南
### 6.1 如何使用Python部署PP-OCRv2系列模型.
本目录下的`infer.py`代码是以PP-OCRv3模型为例, 如果用户有使用PP-OCRv2的需求, 只需要按照下面所示的方式, 来创建PP-OCRv2并使用.
```python
# 此行为创建PP-OCRv3模型的代码
ppocr_v3 = fd.vision.ocr.PPOCRv3(det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# 只需要将PPOCRv3改为PPOCRv2,即可创造PPOCRv2模型, 同时, 后续的接口均使用ppocr_v2来调用
ppocr_v2 = fd.vision.ocr.PPOCRv2(det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# 如果用户在部署PP-OCRv2时, 需要使用TensorRT推理, 还需要改动Rec模型的TensorRT的输入shape.
# 建议如下修改, 需要把 H 维度改为32, W 纬度按需修改.
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
[args.rec_bs, 3, 32, 320],
[args.rec_bs, 3, 32, 2304])
```
### 6.2 如何在PP-OCRv2/v3系列模型中, 关闭文字方向分类器的使用.
在PP-OCRv3/v2中, 文字方向分类器是可选的, 用户可以按照以下方式, 来决定自己是否使用方向分类器.
```python
# 使用 Cls 模型
ppocr_v3 = fd.vision.ocr.PPOCRv3(det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# 不使用 Cls 模型
ppocr_v3 = fd.vision.ocr.PPOCRv3(det_model=det_model, cls_model=None, rec_model=rec_model)
```
### 6.3 如何修改前后处理超参数.
在示例代码中, 我们展示出了修改前后处理超参数的接口,并设置为默认值,其中, FastDeploy提供的超参数的含义与文档[PaddleOCR推理模型参数解释](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/inference_args.md)是相同的. 如果用户想要进行更多定制化的开发, 请阅读[PP-OCR系列 Python API查阅](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/ocr.html)
```python
# 设置检测模型的max_side_len
det_model.preprocessor.max_side_len = 960
# 其他...
```
### 6.4 其他指南
- [FastDeploy部署PaddleOCR模型概览](../../)
- [PP-OCRv3 C++部署](../cpp)
- [PP-OCRv3 C 部署](../c)
- [PP-OCRv3 C# 部署](../csharp)
## 7. 常见问题
- PaddleOCR能在FastDeploy支持的多种后端上推理,支持情况如下表所示, 如何切换后端, 详见文档[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|硬件类型|支持的后端|
|:---:|:---:|
|X86 CPU| Paddle Inference, ONNX Runtime, OpenVINO |
|ARM CPU| Paddle Lite |
|飞腾 CPU| ONNX Runtime |
|NVIDIA GPU| Paddle Inference, ONNX Runtime, TensorRT |
- [如何将模型预测结果转为numpy格式](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/vision_result_related_problems.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)