353 lines
11 KiB
Python
353 lines
11 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle import ParamAttr
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.vision.ops import DeformConv2D
|
|
from paddle.regularizer import L2Decay
|
|
from paddle.nn.initializer import Normal, Constant, XavierUniform
|
|
|
|
__all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"]
|
|
|
|
|
|
class DeformableConvV2(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=0,
|
|
dilation=1,
|
|
groups=1,
|
|
weight_attr=None,
|
|
bias_attr=None,
|
|
lr_scale=1,
|
|
regularizer=None,
|
|
skip_quant=False,
|
|
dcn_bias_regularizer=L2Decay(0.),
|
|
dcn_bias_lr_scale=2.):
|
|
super(DeformableConvV2, self).__init__()
|
|
self.offset_channel = 2 * kernel_size**2 * groups
|
|
self.mask_channel = kernel_size**2 * groups
|
|
|
|
if bias_attr:
|
|
# in FCOS-DCN head, specifically need learning_rate and regularizer
|
|
dcn_bias_attr = ParamAttr(
|
|
initializer=Constant(value=0),
|
|
regularizer=dcn_bias_regularizer,
|
|
learning_rate=dcn_bias_lr_scale)
|
|
else:
|
|
# in ResNet backbone, do not need bias
|
|
dcn_bias_attr = False
|
|
self.conv_dcn = DeformConv2D(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=(kernel_size - 1) // 2 * dilation,
|
|
dilation=dilation,
|
|
deformable_groups=groups,
|
|
weight_attr=weight_attr,
|
|
bias_attr=dcn_bias_attr)
|
|
|
|
if lr_scale == 1 and regularizer is None:
|
|
offset_bias_attr = ParamAttr(initializer=Constant(0.))
|
|
else:
|
|
offset_bias_attr = ParamAttr(
|
|
initializer=Constant(0.),
|
|
learning_rate=lr_scale,
|
|
regularizer=regularizer)
|
|
self.conv_offset = nn.Conv2D(
|
|
in_channels,
|
|
groups * 3 * kernel_size**2,
|
|
kernel_size,
|
|
stride=stride,
|
|
padding=(kernel_size - 1) // 2,
|
|
weight_attr=ParamAttr(initializer=Constant(0.0)),
|
|
bias_attr=offset_bias_attr)
|
|
if skip_quant:
|
|
self.conv_offset.skip_quant = True
|
|
|
|
def forward(self, x):
|
|
offset_mask = self.conv_offset(x)
|
|
offset, mask = paddle.split(
|
|
offset_mask,
|
|
num_or_sections=[self.offset_channel, self.mask_channel],
|
|
axis=1)
|
|
mask = F.sigmoid(mask)
|
|
y = self.conv_dcn(x, offset, mask=mask)
|
|
return y
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride=1,
|
|
groups=1,
|
|
dcn_groups=1,
|
|
is_vd_mode=False,
|
|
act=None,
|
|
is_dcn=False):
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self.is_vd_mode = is_vd_mode
|
|
self._pool2d_avg = nn.AvgPool2D(
|
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
if not is_dcn:
|
|
self._conv = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=groups,
|
|
bias_attr=False)
|
|
else:
|
|
self._conv = DeformableConvV2(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=dcn_groups, #groups,
|
|
bias_attr=False)
|
|
self._batch_norm = nn.BatchNorm(out_channels, act=act)
|
|
|
|
def forward(self, inputs):
|
|
if self.is_vd_mode:
|
|
inputs = self._pool2d_avg(inputs)
|
|
y = self._conv(inputs)
|
|
y = self._batch_norm(y)
|
|
return y
|
|
|
|
|
|
class BottleneckBlock(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
stride,
|
|
shortcut=True,
|
|
if_first=False,
|
|
is_dcn=False, ):
|
|
super(BottleneckBlock, self).__init__()
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
act='relu')
|
|
self.conv1 = ConvBNLayer(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
act='relu',
|
|
is_dcn=is_dcn,
|
|
dcn_groups=2)
|
|
self.conv2 = ConvBNLayer(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels * 4,
|
|
kernel_size=1,
|
|
act=None)
|
|
|
|
if not shortcut:
|
|
self.short = ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels * 4,
|
|
kernel_size=1,
|
|
stride=1,
|
|
is_vd_mode=False if if_first else True)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv0(inputs)
|
|
conv1 = self.conv1(y)
|
|
conv2 = self.conv2(conv1)
|
|
|
|
if self.shortcut:
|
|
short = inputs
|
|
else:
|
|
short = self.short(inputs)
|
|
y = paddle.add(x=short, y=conv2)
|
|
y = F.relu(y)
|
|
return y
|
|
|
|
|
|
class BasicBlock(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
stride,
|
|
shortcut=True,
|
|
if_first=False, ):
|
|
super(BasicBlock, self).__init__()
|
|
self.stride = stride
|
|
self.conv0 = ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
act='relu')
|
|
self.conv1 = ConvBNLayer(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=3,
|
|
act=None)
|
|
|
|
if not shortcut:
|
|
self.short = ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
is_vd_mode=False if if_first else True)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv0(inputs)
|
|
conv1 = self.conv1(y)
|
|
|
|
if self.shortcut:
|
|
short = inputs
|
|
else:
|
|
short = self.short(inputs)
|
|
y = paddle.add(x=short, y=conv1)
|
|
y = F.relu(y)
|
|
return y
|
|
|
|
|
|
class ResNet_vd(nn.Layer):
|
|
def __init__(self,
|
|
in_channels=3,
|
|
layers=50,
|
|
dcn_stage=None,
|
|
out_indices=None,
|
|
**kwargs):
|
|
super(ResNet_vd, self).__init__()
|
|
|
|
self.layers = layers
|
|
supported_layers = [18, 34, 50, 101, 152, 200]
|
|
assert layers in supported_layers, \
|
|
"supported layers are {} but input layer is {}".format(
|
|
supported_layers, layers)
|
|
|
|
if layers == 18:
|
|
depth = [2, 2, 2, 2]
|
|
elif layers == 34 or layers == 50:
|
|
depth = [3, 4, 6, 3]
|
|
elif layers == 101:
|
|
depth = [3, 4, 23, 3]
|
|
elif layers == 152:
|
|
depth = [3, 8, 36, 3]
|
|
elif layers == 200:
|
|
depth = [3, 12, 48, 3]
|
|
num_channels = [64, 256, 512,
|
|
1024] if layers >= 50 else [64, 64, 128, 256]
|
|
num_filters = [64, 128, 256, 512]
|
|
|
|
self.dcn_stage = dcn_stage if dcn_stage is not None else [
|
|
False, False, False, False
|
|
]
|
|
self.out_indices = out_indices if out_indices is not None else [
|
|
0, 1, 2, 3
|
|
]
|
|
|
|
self.conv1_1 = ConvBNLayer(
|
|
in_channels=in_channels,
|
|
out_channels=32,
|
|
kernel_size=3,
|
|
stride=2,
|
|
act='relu')
|
|
self.conv1_2 = ConvBNLayer(
|
|
in_channels=32,
|
|
out_channels=32,
|
|
kernel_size=3,
|
|
stride=1,
|
|
act='relu')
|
|
self.conv1_3 = ConvBNLayer(
|
|
in_channels=32,
|
|
out_channels=64,
|
|
kernel_size=3,
|
|
stride=1,
|
|
act='relu')
|
|
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
|
|
|
self.stages = []
|
|
self.out_channels = []
|
|
if layers >= 50:
|
|
for block in range(len(depth)):
|
|
block_list = []
|
|
shortcut = False
|
|
is_dcn = self.dcn_stage[block]
|
|
for i in range(depth[block]):
|
|
bottleneck_block = self.add_sublayer(
|
|
'bb_%d_%d' % (block, i),
|
|
BottleneckBlock(
|
|
in_channels=num_channels[block]
|
|
if i == 0 else num_filters[block] * 4,
|
|
out_channels=num_filters[block],
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
shortcut=shortcut,
|
|
if_first=block == i == 0,
|
|
is_dcn=is_dcn))
|
|
shortcut = True
|
|
block_list.append(bottleneck_block)
|
|
if block in self.out_indices:
|
|
self.out_channels.append(num_filters[block] * 4)
|
|
self.stages.append(nn.Sequential(*block_list))
|
|
else:
|
|
for block in range(len(depth)):
|
|
block_list = []
|
|
shortcut = False
|
|
for i in range(depth[block]):
|
|
basic_block = self.add_sublayer(
|
|
'bb_%d_%d' % (block, i),
|
|
BasicBlock(
|
|
in_channels=num_channels[block]
|
|
if i == 0 else num_filters[block],
|
|
out_channels=num_filters[block],
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
shortcut=shortcut,
|
|
if_first=block == i == 0))
|
|
shortcut = True
|
|
block_list.append(basic_block)
|
|
if block in self.out_indices:
|
|
self.out_channels.append(num_filters[block])
|
|
self.stages.append(nn.Sequential(*block_list))
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv1_1(inputs)
|
|
y = self.conv1_2(y)
|
|
y = self.conv1_3(y)
|
|
y = self.pool2d_max(y)
|
|
out = []
|
|
for i, block in enumerate(self.stages):
|
|
y = block(y)
|
|
if i in self.out_indices:
|
|
out.append(y)
|
|
return out
|