280 lines
10 KiB
Python
280 lines
10 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Code is refer from:
|
|
https://github.com/RuijieJ/pren/blob/main/Nets/EfficientNet.py
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import re
|
|
import collections
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
__all__ = ['EfficientNetb3']
|
|
|
|
GlobalParams = collections.namedtuple('GlobalParams', [
|
|
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes',
|
|
'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth',
|
|
'drop_connect_rate', 'image_size'
|
|
])
|
|
|
|
BlockArgs = collections.namedtuple('BlockArgs', [
|
|
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
|
|
'expand_ratio', 'id_skip', 'stride', 'se_ratio'
|
|
])
|
|
|
|
|
|
class BlockDecoder:
|
|
@staticmethod
|
|
def _decode_block_string(block_string):
|
|
assert isinstance(block_string, str)
|
|
|
|
ops = block_string.split('_')
|
|
options = {}
|
|
for op in ops:
|
|
splits = re.split(r'(\d.*)', op)
|
|
if len(splits) >= 2:
|
|
key, value = splits[:2]
|
|
options[key] = value
|
|
|
|
assert (('s' in options and len(options['s']) == 1) or
|
|
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
|
|
|
|
return BlockArgs(
|
|
kernel_size=int(options['k']),
|
|
num_repeat=int(options['r']),
|
|
input_filters=int(options['i']),
|
|
output_filters=int(options['o']),
|
|
expand_ratio=int(options['e']),
|
|
id_skip=('noskip' not in block_string),
|
|
se_ratio=float(options['se']) if 'se' in options else None,
|
|
stride=[int(options['s'][0])])
|
|
|
|
@staticmethod
|
|
def decode(string_list):
|
|
assert isinstance(string_list, list)
|
|
blocks_args = []
|
|
for block_string in string_list:
|
|
blocks_args.append(BlockDecoder._decode_block_string(block_string))
|
|
return blocks_args
|
|
|
|
|
|
def efficientnet(width_coefficient=None,
|
|
depth_coefficient=None,
|
|
dropout_rate=0.2,
|
|
drop_connect_rate=0.2,
|
|
image_size=None,
|
|
num_classes=1000):
|
|
blocks_args = [
|
|
'r1_k3_s11_e1_i32_o16_se0.25',
|
|
'r2_k3_s22_e6_i16_o24_se0.25',
|
|
'r2_k5_s22_e6_i24_o40_se0.25',
|
|
'r3_k3_s22_e6_i40_o80_se0.25',
|
|
'r3_k5_s11_e6_i80_o112_se0.25',
|
|
'r4_k5_s22_e6_i112_o192_se0.25',
|
|
'r1_k3_s11_e6_i192_o320_se0.25',
|
|
]
|
|
blocks_args = BlockDecoder.decode(blocks_args)
|
|
|
|
global_params = GlobalParams(
|
|
batch_norm_momentum=0.99,
|
|
batch_norm_epsilon=1e-3,
|
|
dropout_rate=dropout_rate,
|
|
drop_connect_rate=drop_connect_rate,
|
|
num_classes=num_classes,
|
|
width_coefficient=width_coefficient,
|
|
depth_coefficient=depth_coefficient,
|
|
depth_divisor=8,
|
|
min_depth=None,
|
|
image_size=image_size, )
|
|
return blocks_args, global_params
|
|
|
|
|
|
class EffUtils:
|
|
@staticmethod
|
|
def round_filters(filters, global_params):
|
|
""" Calculate and round number of filters based on depth multiplier. """
|
|
multiplier = global_params.width_coefficient
|
|
if not multiplier:
|
|
return filters
|
|
divisor = global_params.depth_divisor
|
|
min_depth = global_params.min_depth
|
|
filters *= multiplier
|
|
min_depth = min_depth or divisor
|
|
new_filters = max(min_depth,
|
|
int(filters + divisor / 2) // divisor * divisor)
|
|
if new_filters < 0.9 * filters:
|
|
new_filters += divisor
|
|
return int(new_filters)
|
|
|
|
@staticmethod
|
|
def round_repeats(repeats, global_params):
|
|
""" Round number of filters based on depth multiplier. """
|
|
multiplier = global_params.depth_coefficient
|
|
if not multiplier:
|
|
return repeats
|
|
return int(math.ceil(multiplier * repeats))
|
|
|
|
|
|
class MbConvBlock(nn.Layer):
|
|
def __init__(self, block_args):
|
|
super(MbConvBlock, self).__init__()
|
|
self._block_args = block_args
|
|
self.has_se = (self._block_args.se_ratio is not None) and \
|
|
(0 < self._block_args.se_ratio <= 1)
|
|
self.id_skip = block_args.id_skip
|
|
|
|
# expansion phase
|
|
self.inp = self._block_args.input_filters
|
|
oup = self._block_args.input_filters * self._block_args.expand_ratio
|
|
if self._block_args.expand_ratio != 1:
|
|
self._expand_conv = nn.Conv2D(self.inp, oup, 1, bias_attr=False)
|
|
self._bn0 = nn.BatchNorm(oup)
|
|
|
|
# depthwise conv phase
|
|
k = self._block_args.kernel_size
|
|
s = self._block_args.stride
|
|
if isinstance(s, list):
|
|
s = s[0]
|
|
self._depthwise_conv = nn.Conv2D(
|
|
oup,
|
|
oup,
|
|
groups=oup,
|
|
kernel_size=k,
|
|
stride=s,
|
|
padding='same',
|
|
bias_attr=False)
|
|
self._bn1 = nn.BatchNorm(oup)
|
|
|
|
# squeeze and excitation layer, if desired
|
|
if self.has_se:
|
|
num_squeezed_channels = max(1,
|
|
int(self._block_args.input_filters *
|
|
self._block_args.se_ratio))
|
|
self._se_reduce = nn.Conv2D(oup, num_squeezed_channels, 1)
|
|
self._se_expand = nn.Conv2D(num_squeezed_channels, oup, 1)
|
|
|
|
# output phase and some util class
|
|
self.final_oup = self._block_args.output_filters
|
|
self._project_conv = nn.Conv2D(oup, self.final_oup, 1, bias_attr=False)
|
|
self._bn2 = nn.BatchNorm(self.final_oup)
|
|
self._swish = nn.Swish()
|
|
|
|
def _drop_connect(self, inputs, p, training):
|
|
if not training:
|
|
return inputs
|
|
batch_size = inputs.shape[0]
|
|
keep_prob = 1 - p
|
|
random_tensor = keep_prob
|
|
random_tensor += paddle.rand([batch_size, 1, 1, 1], dtype=inputs.dtype)
|
|
random_tensor = paddle.to_tensor(random_tensor, place=inputs.place)
|
|
binary_tensor = paddle.floor(random_tensor)
|
|
output = inputs / keep_prob * binary_tensor
|
|
return output
|
|
|
|
def forward(self, inputs, drop_connect_rate=None):
|
|
# expansion and depthwise conv
|
|
x = inputs
|
|
if self._block_args.expand_ratio != 1:
|
|
x = self._swish(self._bn0(self._expand_conv(inputs)))
|
|
x = self._swish(self._bn1(self._depthwise_conv(x)))
|
|
|
|
# squeeze and excitation
|
|
if self.has_se:
|
|
x_squeezed = F.adaptive_avg_pool2d(x, 1)
|
|
x_squeezed = self._se_expand(
|
|
self._swish(self._se_reduce(x_squeezed)))
|
|
x = F.sigmoid(x_squeezed) * x
|
|
x = self._bn2(self._project_conv(x))
|
|
|
|
# skip conntection and drop connect
|
|
if self.id_skip and self._block_args.stride == 1 and \
|
|
self.inp == self.final_oup:
|
|
if drop_connect_rate:
|
|
x = self._drop_connect(
|
|
x, p=drop_connect_rate, training=self.training)
|
|
x = x + inputs
|
|
return x
|
|
|
|
|
|
class EfficientNetb3_PREN(nn.Layer):
|
|
def __init__(self, in_channels):
|
|
super(EfficientNetb3_PREN, self).__init__()
|
|
"""
|
|
the fllowing are efficientnetb3's superparams,
|
|
they means efficientnetb3 network's width, depth, resolution and
|
|
dropout respectively, to fit for text recognition task, the resolution
|
|
here is changed from 300 to 64.
|
|
"""
|
|
w, d, s, p = 1.2, 1.4, 64, 0.3
|
|
self._blocks_args, self._global_params = efficientnet(
|
|
width_coefficient=w,
|
|
depth_coefficient=d,
|
|
dropout_rate=p,
|
|
image_size=s)
|
|
self.out_channels = []
|
|
# stem
|
|
out_channels = EffUtils.round_filters(32, self._global_params)
|
|
self._conv_stem = nn.Conv2D(
|
|
in_channels, out_channels, 3, 2, padding='same', bias_attr=False)
|
|
self._bn0 = nn.BatchNorm(out_channels)
|
|
|
|
# build blocks
|
|
self._blocks = []
|
|
# to extract three feature maps for fpn based on efficientnetb3 backbone
|
|
self._concerned_block_idxes = [7, 17, 25]
|
|
_concerned_idx = 0
|
|
for i, block_args in enumerate(self._blocks_args):
|
|
block_args = block_args._replace(
|
|
input_filters=EffUtils.round_filters(block_args.input_filters,
|
|
self._global_params),
|
|
output_filters=EffUtils.round_filters(block_args.output_filters,
|
|
self._global_params),
|
|
num_repeat=EffUtils.round_repeats(block_args.num_repeat,
|
|
self._global_params))
|
|
self._blocks.append(
|
|
self.add_sublayer(f"{i}-0", MbConvBlock(block_args)))
|
|
_concerned_idx += 1
|
|
if _concerned_idx in self._concerned_block_idxes:
|
|
self.out_channels.append(block_args.output_filters)
|
|
if block_args.num_repeat > 1:
|
|
block_args = block_args._replace(
|
|
input_filters=block_args.output_filters, stride=1)
|
|
for j in range(block_args.num_repeat - 1):
|
|
self._blocks.append(
|
|
self.add_sublayer(f'{i}-{j+1}', MbConvBlock(block_args)))
|
|
_concerned_idx += 1
|
|
if _concerned_idx in self._concerned_block_idxes:
|
|
self.out_channels.append(block_args.output_filters)
|
|
|
|
self._swish = nn.Swish()
|
|
|
|
def forward(self, inputs):
|
|
outs = []
|
|
x = self._swish(self._bn0(self._conv_stem(inputs)))
|
|
for idx, block in enumerate(self._blocks):
|
|
drop_connect_rate = self._global_params.drop_connect_rate
|
|
if drop_connect_rate:
|
|
drop_connect_rate *= float(idx) / len(self._blocks)
|
|
x = block(x, drop_connect_rate=drop_connect_rate)
|
|
if idx in self._concerned_block_idxes:
|
|
outs.append(x)
|
|
return outs
|