PaddleOCR/configs/table/table_mv3.yml

129 lines
3.2 KiB
YAML

Global:
use_gpu: true
epoch_num: 400
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/table_mv3/
save_epoch_step: 400
# evaluation is run every 400 iterations after the 0th iteration
eval_batch_step: [0, 400]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: ppstructure/docs/table/table.jpg
save_res_path: output/table_mv3
# for data or label process
character_dict_path: ppocr/utils/dict/table_structure_dict.txt
character_type: en
max_text_length: &max_text_length 500
box_format: &box_format 'xyxy' # 'xywh', 'xyxy', 'xyxyxyxy'
infer_mode: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
clip_norm: 5.0
lr:
learning_rate: 0.001
regularizer:
name: 'L2'
factor: 0.00000
Architecture:
model_type: table
algorithm: TableAttn
Backbone:
name: MobileNetV3
scale: 1.0
model_name: small
disable_se: true
Head:
name: TableAttentionHead
hidden_size: 256
max_text_length: *max_text_length
loc_reg_num: &loc_reg_num 4
Loss:
name: TableAttentionLoss
structure_weight: 100.0
loc_weight: 10000.0
PostProcess:
name: TableLabelDecode
Metric:
name: TableMetric
main_indicator: acc
compute_bbox_metric: false # cost many time, set False for training
Train:
dataset:
name: PubTabDataSet
data_dir: train_data/table/pubtabnet/train/
label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- TableLabelEncode:
learn_empty_box: False
merge_no_span_structure: False
replace_empty_cell_token: False
loc_reg_num: *loc_reg_num
max_text_length: *max_text_length
- TableBoxEncode:
- ResizeTableImage:
max_len: 488
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
size: [488, 488]
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ]
loader:
shuffle: True
batch_size_per_card: 48
drop_last: True
num_workers: 1
Eval:
dataset:
name: PubTabDataSet
data_dir: train_data/table/pubtabnet/val/
label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- TableLabelEncode:
learn_empty_box: False
merge_no_span_structure: False
replace_empty_cell_token: False
loc_reg_num: *loc_reg_num
max_text_length: *max_text_length
- TableBoxEncode:
- ResizeTableImage:
max_len: 488
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
size: [488, 488]
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 48
num_workers: 1