155 lines
5.7 KiB
Python
155 lines
5.7 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
__all__ = ['DetMetric', 'DetFCEMetric']
|
|
|
|
from .eval_det_iou import DetectionIoUEvaluator
|
|
|
|
|
|
class DetMetric(object):
|
|
def __init__(self, main_indicator='hmean', **kwargs):
|
|
self.evaluator = DetectionIoUEvaluator()
|
|
self.main_indicator = main_indicator
|
|
self.reset()
|
|
|
|
def __call__(self, preds, batch, **kwargs):
|
|
'''
|
|
batch: a list produced by dataloaders.
|
|
image: np.ndarray of shape (N, C, H, W).
|
|
ratio_list: np.ndarray of shape(N,2)
|
|
polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
|
|
ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not.
|
|
preds: a list of dict produced by post process
|
|
points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
|
|
'''
|
|
gt_polyons_batch = batch[2]
|
|
ignore_tags_batch = batch[3]
|
|
for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
|
|
ignore_tags_batch):
|
|
# prepare gt
|
|
gt_info_list = [{
|
|
'points': gt_polyon,
|
|
'text': '',
|
|
'ignore': ignore_tag
|
|
} for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
|
|
# prepare det
|
|
det_info_list = [{
|
|
'points': det_polyon,
|
|
'text': ''
|
|
} for det_polyon in pred['points']]
|
|
result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
|
|
self.results.append(result)
|
|
|
|
def get_metric(self):
|
|
"""
|
|
return metrics {
|
|
'precision': 0,
|
|
'recall': 0,
|
|
'hmean': 0
|
|
}
|
|
"""
|
|
|
|
metrics = self.evaluator.combine_results(self.results)
|
|
self.reset()
|
|
return metrics
|
|
|
|
def reset(self):
|
|
self.results = [] # clear results
|
|
|
|
|
|
class DetFCEMetric(object):
|
|
def __init__(self, main_indicator='hmean', **kwargs):
|
|
self.evaluator = DetectionIoUEvaluator()
|
|
self.main_indicator = main_indicator
|
|
self.reset()
|
|
|
|
def __call__(self, preds, batch, **kwargs):
|
|
'''
|
|
batch: a list produced by dataloaders.
|
|
image: np.ndarray of shape (N, C, H, W).
|
|
ratio_list: np.ndarray of shape(N,2)
|
|
polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
|
|
ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not.
|
|
preds: a list of dict produced by post process
|
|
points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
|
|
'''
|
|
gt_polyons_batch = batch[2]
|
|
ignore_tags_batch = batch[3]
|
|
|
|
for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
|
|
ignore_tags_batch):
|
|
# prepare gt
|
|
gt_info_list = [{
|
|
'points': gt_polyon,
|
|
'text': '',
|
|
'ignore': ignore_tag
|
|
} for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
|
|
# prepare det
|
|
det_info_list = [{
|
|
'points': det_polyon,
|
|
'text': '',
|
|
'score': score
|
|
} for det_polyon, score in zip(pred['points'], pred['scores'])]
|
|
|
|
for score_thr in self.results.keys():
|
|
det_info_list_thr = [
|
|
det_info for det_info in det_info_list
|
|
if det_info['score'] >= score_thr
|
|
]
|
|
result = self.evaluator.evaluate_image(gt_info_list,
|
|
det_info_list_thr)
|
|
self.results[score_thr].append(result)
|
|
|
|
def get_metric(self):
|
|
"""
|
|
return metrics {'heman':0,
|
|
'thr 0.3':'precision: 0 recall: 0 hmean: 0',
|
|
'thr 0.4':'precision: 0 recall: 0 hmean: 0',
|
|
'thr 0.5':'precision: 0 recall: 0 hmean: 0',
|
|
'thr 0.6':'precision: 0 recall: 0 hmean: 0',
|
|
'thr 0.7':'precision: 0 recall: 0 hmean: 0',
|
|
'thr 0.8':'precision: 0 recall: 0 hmean: 0',
|
|
'thr 0.9':'precision: 0 recall: 0 hmean: 0',
|
|
}
|
|
"""
|
|
metrics = {}
|
|
hmean = 0
|
|
for score_thr in self.results.keys():
|
|
metric = self.evaluator.combine_results(self.results[score_thr])
|
|
# for key, value in metric.items():
|
|
# metrics['{}_{}'.format(key, score_thr)] = value
|
|
metric_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
|
|
metric['precision'], metric['recall'], metric['hmean'])
|
|
metrics['thr {}'.format(score_thr)] = metric_str
|
|
hmean = max(hmean, metric['hmean'])
|
|
metrics['hmean'] = hmean
|
|
|
|
self.reset()
|
|
return metrics
|
|
|
|
def reset(self):
|
|
self.results = {
|
|
0.3: [],
|
|
0.4: [],
|
|
0.5: [],
|
|
0.6: [],
|
|
0.7: [],
|
|
0.8: [],
|
|
0.9: []
|
|
} # clear results
|