138 lines
5.1 KiB
Python
138 lines
5.1 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/hikopensource/DAVAR-Lab-OCR/blob/main/davarocr/davar_rcg/models/connects/single_block/RFAdaptor.py
|
|
"""
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from paddle.nn.initializer import TruncatedNormal, Constant, Normal, KaimingNormal
|
|
|
|
kaiming_init_ = KaimingNormal()
|
|
zeros_ = Constant(value=0.)
|
|
ones_ = Constant(value=1.)
|
|
|
|
|
|
class S2VAdaptor(nn.Layer):
|
|
""" Semantic to Visual adaptation module"""
|
|
|
|
def __init__(self, in_channels=512):
|
|
super(S2VAdaptor, self).__init__()
|
|
|
|
self.in_channels = in_channels # 512
|
|
|
|
# feature strengthen module, channel attention
|
|
self.channel_inter = nn.Linear(
|
|
self.in_channels, self.in_channels, bias_attr=False)
|
|
self.channel_bn = nn.BatchNorm1D(self.in_channels)
|
|
self.channel_act = nn.ReLU()
|
|
self.apply(self.init_weights)
|
|
|
|
def init_weights(self, m):
|
|
if isinstance(m, nn.Conv2D):
|
|
kaiming_init_(m.weight)
|
|
if isinstance(m, nn.Conv2D) and m.bias is not None:
|
|
zeros_(m.bias)
|
|
elif isinstance(m, (nn.BatchNorm, nn.BatchNorm2D, nn.BatchNorm1D)):
|
|
zeros_(m.bias)
|
|
ones_(m.weight)
|
|
|
|
def forward(self, semantic):
|
|
semantic_source = semantic # batch, channel, height, width
|
|
|
|
# feature transformation
|
|
semantic = semantic.squeeze(2).transpose(
|
|
[0, 2, 1]) # batch, width, channel
|
|
channel_att = self.channel_inter(semantic) # batch, width, channel
|
|
channel_att = channel_att.transpose([0, 2, 1]) # batch, channel, width
|
|
channel_bn = self.channel_bn(channel_att) # batch, channel, width
|
|
channel_att = self.channel_act(channel_bn) # batch, channel, width
|
|
|
|
# Feature enhancement
|
|
channel_output = semantic_source * channel_att.unsqueeze(
|
|
-2) # batch, channel, 1, width
|
|
|
|
return channel_output
|
|
|
|
|
|
class V2SAdaptor(nn.Layer):
|
|
""" Visual to Semantic adaptation module"""
|
|
|
|
def __init__(self, in_channels=512, return_mask=False):
|
|
super(V2SAdaptor, self).__init__()
|
|
|
|
# parameter initialization
|
|
self.in_channels = in_channels
|
|
self.return_mask = return_mask
|
|
|
|
# output transformation
|
|
self.channel_inter = nn.Linear(
|
|
self.in_channels, self.in_channels, bias_attr=False)
|
|
self.channel_bn = nn.BatchNorm1D(self.in_channels)
|
|
self.channel_act = nn.ReLU()
|
|
|
|
def forward(self, visual):
|
|
# Feature enhancement
|
|
visual = visual.squeeze(2).transpose([0, 2, 1]) # batch, width, channel
|
|
channel_att = self.channel_inter(visual) # batch, width, channel
|
|
channel_att = channel_att.transpose([0, 2, 1]) # batch, channel, width
|
|
channel_bn = self.channel_bn(channel_att) # batch, channel, width
|
|
channel_att = self.channel_act(channel_bn) # batch, channel, width
|
|
|
|
# size alignment
|
|
channel_output = channel_att.unsqueeze(-2) # batch, width, channel
|
|
|
|
if self.return_mask:
|
|
return channel_output, channel_att
|
|
return channel_output
|
|
|
|
|
|
class RFAdaptor(nn.Layer):
|
|
def __init__(self, in_channels=512, use_v2s=True, use_s2v=True, **kwargs):
|
|
super(RFAdaptor, self).__init__()
|
|
if use_v2s is True:
|
|
self.neck_v2s = V2SAdaptor(in_channels=in_channels, **kwargs)
|
|
else:
|
|
self.neck_v2s = None
|
|
if use_s2v is True:
|
|
self.neck_s2v = S2VAdaptor(in_channels=in_channels, **kwargs)
|
|
else:
|
|
self.neck_s2v = None
|
|
self.out_channels = in_channels
|
|
|
|
def forward(self, x):
|
|
visual_feature, rcg_feature = x
|
|
if visual_feature is not None:
|
|
batch, source_channels, v_source_height, v_source_width = visual_feature.shape
|
|
visual_feature = visual_feature.reshape(
|
|
[batch, source_channels, 1, v_source_height * v_source_width])
|
|
|
|
if self.neck_v2s is not None:
|
|
v_rcg_feature = rcg_feature * self.neck_v2s(visual_feature)
|
|
else:
|
|
v_rcg_feature = rcg_feature
|
|
|
|
if self.neck_s2v is not None:
|
|
v_visual_feature = visual_feature + self.neck_s2v(rcg_feature)
|
|
else:
|
|
v_visual_feature = visual_feature
|
|
if v_rcg_feature is not None:
|
|
batch, source_channels, source_height, source_width = v_rcg_feature.shape
|
|
v_rcg_feature = v_rcg_feature.reshape(
|
|
[batch, source_channels, 1, source_height * source_width])
|
|
|
|
v_rcg_feature = v_rcg_feature.squeeze(2).transpose([0, 2, 1])
|
|
return v_visual_feature, v_rcg_feature
|