PaddleOCR/ppstructure/layout/README_ch.md

470 lines
20 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

简体中文 | [English](README.md)
# 版面分析
- [1. 简介](#1-简介)
- [2. 快速开始](#2-快速开始)
- [3. 安装](#3-安装)
- [3.1 安装PaddlePaddle](#31-安装paddlepaddle)
- [3.2 安装PaddleDetection](#32-安装paddledetection)
- [4. 数据准备](#4-数据准备)
- [4.1 英文数据集](#41-英文数据集)
- [4.2 更多数据集](#42-更多数据集)
- [5. 开始训练](#5-开始训练)
- [5.1 启动训练](#51-启动训练)
- [5.2 FGD蒸馏训练](#52-fgd蒸馏训练)
- [6. 模型评估与预测](#6-模型评估与预测)
- [6.1 指标评估](#61-指标评估)
- [6.2 测试版面分析结果](#62-测试版面分析结果)
- [7 模型导出与预测](#7-模型导出与预测)
- [7.1 模型导出](#71-模型导出)
- [7.2 模型推理](#72-模型推理)
## 1. 简介
版面分析指的是对图片形式的文档进行区域划分,定位其中的关键区域,如文字、标题、表格、图片等。版面分析算法基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的轻量模型PP-PicoDet进行开发包含英文、中文、表格版面分析3类模型。其中英文模型支持Text、Title、Tale、Figure、List5类区域的检测中文模型支持Text、Title、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation10类区域的检测表格版面分析支持Table区域的检测版面分析效果如下图所示
<div align="center">
<img src="../docs/layout/layout.png" width="800">
</div>
## 2. 快速开始
PP-Structure目前提供了中文、英文、表格三类文档版面分析模型模型链接见 [models_list](../docs/models_list.md#1-版面分析模型)。也提供了whl包的形式方便快速使用详见 [quickstart](../docs/quickstart.md)。
## 3. 安装
### 3.1. 安装PaddlePaddle
- **1) 安装PaddlePaddle**
```bash
python3 -m pip install --upgrade pip
# GPU安装
python3 -m pip install "paddlepaddle-gpu>=2.3" -i https://mirror.baidu.com/pypi/simple
# CPU安装
python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simple
```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
### 3.2. 安装PaddleDetection
- **1下载PaddleDetection源码**
```bash
git clone https://github.com/PaddlePaddle/PaddleDetection.git
```
- **2安装其他依赖**
```bash
cd PaddleDetection
python3 -m pip install -r requirements.txt
```
## 4. 数据准备
如果希望直接体验预测过程,可以跳过数据准备,下载我们提供的预训练模型。
### 4.1. 英文数据集
下载文档分析数据集[PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)数据集96G包含5个类`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}`
```
# 下载数据
wget https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz
# 解压数据
tar -xvf publaynet.tar.gz
```
解压之后的**目录结构:**
```
|-publaynet
|- test
|- PMC1277013_00004.jpg
|- PMC1291385_00002.jpg
| ...
|- train.json
|- train
|- PMC1291385_00002.jpg
|- PMC1277013_00004.jpg
| ...
|- val.json
|- val
|- PMC538274_00004.jpg
|- PMC539300_00004.jpg
| ...
```
**数据分布:**
| File or Folder | Description | num |
| :------------- | :------------- | ------- |
| `train/` | 训练集图片 | 335,703 |
| `val/` | 验证集图片 | 11,245 |
| `test/` | 测试集图片 | 11,405 |
| `train.json` | 训练集标注文件 | - |
| `val.json` | 验证集标注文件 | - |
**标注格式:**
json文件包含所有图像的标注数据以字典嵌套的方式存放包含以下key
- info表示标注文件info。
- licenses表示标注文件licenses。
- images表示标注文件中图像信息列表每个元素是一张图像的信息。如下为其中一张图像的信息
```
{
'file_name': 'PMC4055390_00006.jpg', # file_name
'height': 601, # image height
'width': 792, # image width
'id': 341427 # image id
}
```
- annotations表示标注文件中目标物体的标注信息列表每个元素是一个目标物体的标注信息。如下为其中一个目标物体的标注信息
```
{
'segmentation': # 物体的分割标注
'area': 60518.099043117836, # 物体的区域面积
'iscrowd': 0, # iscrowd
'image_id': 341427, # image id
'bbox': [50.58, 490.86, 240.15, 252.16], # bbox [x1,y1,w,h]
'category_id': 1, # category_id
'id': 3322348 # image id
}
```
### 4.2. 更多数据集
我们提供了CDLA(中文版面分析)、TableBank(表格版面分析)等数据集的下连接处理为上述标注文件json格式即可以按相同方式进行训练。
| dataset | 简介 |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| [cTDaR2019_cTDaR](https://cndplab-founder.github.io/cTDaR2019/) | 用于表格检测(TRACKA)和表格识别(TRACKB)。图片类型包含历史数据集(以cTDaR_t0开头如cTDaR_t00872.jpg)和现代数据集(以cTDaR_t1开头cTDaR_t10482.jpg)。 |
| [IIIT-AR-13K](http://cvit.iiit.ac.in/usodi/iiitar13k.php) | 手动注释公开的年度报告中的图形或页面而构建的数据集包含5类table, figure, natural image, logo, and signature |
| [CDLA](https://github.com/buptlihang/CDLA) | 中文文档版面分析数据集面向中文文献类论文场景包含10类Text、Title、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation |
| [TableBank](https://github.com/doc-analysis/TableBank) | 用于表格检测和识别大型数据集包含Word和Latex2种文档格式 |
| [DocBank](https://github.com/doc-analysis/DocBank) | 使用弱监督方法构建的大规模数据集(500K文档页面)用于文档布局分析包含12类Author、Caption、Date、Equation、Figure、Footer、List、Paragraph、Reference、Section、Table、Title |
## 5. 开始训练
提供了训练脚本、评估脚本和预测脚本本节将以PubLayNet预训练模型为例进行讲解。
如果不希望训练,直接体验后面的模型评估、预测、动转静、推理的流程,可以下载提供的预训练模型(PubLayNet数据集)并跳过5.1和5.2。
```
mkdir pretrained_model
cd pretrained_model
# 下载PubLayNet预训练模型直接体验模型评估、预测、动转静
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams
# 下载PubLaynet推理模型直接体验模型推理
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar
```
如果测试图片为中文可以下载中文CDLA数据集的预训练模型识别10类文档区域Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_cdla`模型的训练模型和推理模型。如果只检测图片中的表格区域,可以下载表格数据集的预训练模型,在[版面分析模型](../docs/models_list.md)中下载`picodet_lcnet_x1_0_fgd_layout_table`模型的训练模型和推理模型。
### 5.1. 启动训练
使用PaddleDetection[版面分析配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/picodet/legacy_model/application/layout_analysis)启动训练
* 修改配置文件
如果你希望训练自己的数据集,需要修改配置文件中的数据配置、类别数。
以`configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 为例,修改的内容如下所示。
```yaml
metric: COCO
# 类别数
num_classes: 5
TrainDataset:
!COCODataSet
# 修改为你自己的训练数据目录
image_dir: train
# 修改为你自己的训练数据标签文件
anno_path: train.json
# 修改为你自己的训练数据根目录
dataset_dir: /root/publaynet/
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
# 修改为你自己的验证数据目录
image_dir: val
# 修改为你自己的验证数据标签文件
anno_path: val.json
# 修改为你自己的验证数据根目录
dataset_dir: /root/publaynet/
TestDataset:
!ImageFolder
# 修改为你自己的测试数据标签文件
anno_path: /root/publaynet/val.json
```
* 开始训练在训练时会默认下载PP-PicoDet预训练模型这里无需预先下载。
```bash
# GPU训练 支持单卡,多卡训练
# 训练日志会自动保存到 log 目录中
# 单卡训练
export CUDA_VISIBLE_DEVICES=0
python3 tools/train.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
--eval
# 多卡训练,通过--gpus参数指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
--eval
```
**注意:**如果训练时显存out memory将TrainReader中batch_size调小同时LearningRate中base_lr等比例减小。发布的config均由8卡训练得到如果改变GPU卡数为1那么base_lr需要减小8倍。
正常启动训练后会看到以下log输出
```
[08/15 04:02:30] ppdet.utils.checkpoint INFO: Finish loading model weights: /root/.cache/paddle/weights/LCNet_x1_0_pretrained.pdparams
[08/15 04:02:46] ppdet.engine INFO: Epoch: [0] [ 0/1929] learning_rate: 0.040000 loss_vfl: 1.216707 loss_bbox: 1.142163 loss_dfl: 0.544196 loss: 2.903065 eta: 17 days, 13:50:26 batch_cost: 15.7452 data_cost: 2.9112 ips: 1.5243 images/s
[08/15 04:03:19] ppdet.engine INFO: Epoch: [0] [ 20/1929] learning_rate: 0.064000 loss_vfl: 1.180627 loss_bbox: 0.939552 loss_dfl: 0.442436 loss: 2.628206 eta: 2 days, 12:18:53 batch_cost: 1.5770 data_cost: 0.0008 ips: 15.2184 images/s
[08/15 04:03:47] ppdet.engine INFO: Epoch: [0] [ 40/1929] learning_rate: 0.088000 loss_vfl: 0.543321 loss_bbox: 1.071401 loss_dfl: 0.457817 loss: 2.057003 eta: 2 days, 0:07:03 batch_cost: 1.3190 data_cost: 0.0007 ips: 18.1954 images/s
[08/15 04:04:12] ppdet.engine INFO: Epoch: [0] [ 60/1929] learning_rate: 0.112000 loss_vfl: 0.630989 loss_bbox: 0.859183 loss_dfl: 0.384702 loss: 1.883143 eta: 1 day, 19:01:29 batch_cost: 1.2177 data_cost: 0.0006 ips: 19.7087 images/s
```
- `--eval`表示训练的同时,进行评估, 评估过程中默认将最佳模型,保存为 `output/picodet_lcnet_x1_0_layout/best_accuracy`
**注意,预测/评估时的配置文件请务必与训练一致。**
### 5.2. FGD蒸馏训练
PaddleDetection支持了基于FGD([Focal and Global Knowledge Distillation for Detectors](https://arxiv.org/abs/2111.11837v1))蒸馏的目标检测模型训练过程FGD蒸馏分为两个部分`Focal`和`Global`。`Focal`蒸馏分离图像的前景和背景,让学生模型分别关注教师模型的前景和背景部分特征的关键像素;`Global`蒸馏部分重建不同像素之间的关系并将其从教师转移到学生,以补偿`Focal`蒸馏中丢失的全局信息。
更换数据集修改【TODO】配置中的数据配置、类别数具体可以参考4.1。启动训练:
```bash
# 单卡训练
export CUDA_VISIBLE_DEVICES=0
python3 tools/train.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
--eval
```
- `-c`: 指定模型配置文件。
- `--slim_config`: 指定压缩策略配置文件。
## 6. 模型评估与预测
### 6.1. 指标评估
训练中模型参数默认保存在`output/picodet_lcnet_x1_0_layout`目录下。在评估指标时,需要设置`weights`指向保存的参数文件。评估数据集可以通过 `configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 修改`EvalDataset`中的 `image_dir`、`anno_path`和`dataset_dir` 设置。
```bash
# GPU 评估, weights 为待测权重
python3 tools/eval.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
-o weights=./output/picodet_lcnet_x1_0_layout/best_model
```
会输出以下信息打印出mAP、AP0.5等信息。
```py
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.935
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.979
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.956
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.404
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.782
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.969
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.539
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.938
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.949
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.818
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.978
[08/15 07:07:09] ppdet.engine INFO: Total sample number: 11245, averge FPS: 24.405059207157436
[08/15 07:07:09] ppdet.engine INFO: Best test bbox ap is 0.935.
```
若使用**提供的预训练模型进行评估**,或使用**FGD蒸馏训练的模型**,更换`weights`模型路径,执行如下命令进行评估:
```
python3 tools/eval.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
-o weights=output/picodet_lcnet_x2_5_layout/best_model
```
- `-c`: 指定模型配置文件。
- `--slim_config`: 指定蒸馏策略配置文件。
- `-o weights`: 指定蒸馏算法训好的模型路径。
### 6.2 测试版面分析结果
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml` 完成了模型的训练过程。
使用 PaddleDetection 训练好的模型,您可以使用如下命令进行模型预测。
```bash
python3 tools/infer.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
-o weights='output/picodet_lcnet_x1_0_layout/best_model.pdparams' \
--infer_img='docs/images/layout.jpg' \
--output_dir=output_dir/ \
--draw_threshold=0.5
```
- `--infer_img`: 推理单张图片,也可以通过`--infer_dir`推理文件中的所有图片。
- `--output_dir`: 指定可视化结果保存路径。
- `--draw_threshold`:指定绘制结果框的NMS阈值。
若使用**提供的预训练模型进行预测**,或使用**FGD蒸馏训练的模型**,更换`weights`模型路径,执行如下命令进行预测:
```
python3 tools/infer.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
-o weights='output/picodet_lcnet_x2_5_layout/best_model.pdparams' \
--infer_img='docs/images/layout.jpg' \
--output_dir=output_dir/ \
--draw_threshold=0.5
```
## 7. 模型导出与预测
### 7.1 模型导出
inference 模型(`paddle.jit.save`保存的模型) 一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。 训练过程中保存的模型是checkpoints模型保存的只有模型的参数多用于恢复训练等。 与checkpoints模型相比inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
版面分析模型转inference模型步骤如下
```bash
python3 tools/export_model.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
-o weights=output/picodet_lcnet_x1_0_layout/best_model \
--output_dir=output_inference/
```
* 如无需导出后处理,请指定:`-o export.benchmark=True`(如果-o已出现过此处删掉-o
* 如无需导出NMS请指定`-o export.nms=False`
转换成功后,在目录下有三个文件:
```
output_inference/picodet_lcnet_x1_0_layout/
├── model.pdiparams # inference模型的参数文件
├── model.pdiparams.info # inference模型的参数信息可忽略
└── model.pdmodel # inference模型的模型结构文件
```
若使用**提供的预训练模型转Inference模型**,或使用**FGD蒸馏训练的模型**,更换`weights`模型路径模型转inference模型步骤如下
```bash
python3 tools/export_model.py \
-c configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_analysis/picodet_lcnet_x2_5_layout.yml \
-o weights=./output/picodet_lcnet_x2_5_layout/best_model \
--output_dir=output_inference/
```
### 7.2 模型推理
若使用**提供的推理训练模型推理**,或使用**FGD蒸馏训练的模型**,更换`model_dir`推理模型路径,执行如下命令进行推理:
```bash
python3 deploy/python/infer.py \
--model_dir=output_inference/picodet_lcnet_x1_0_layout/ \
--image_file=docs/images/layout.jpg \
--device=CPU
```
- --device指定GPU、CPU设备
模型推理完成会看到以下log输出
```
------------------------------------------
----------- Model Configuration -----------
Model Arch: PicoDet
Transform Order:
--transform op: Resize
--transform op: NormalizeImage
--transform op: Permute
--transform op: PadStride
--------------------------------------------
class_id:0, confidence:0.9921, left_top:[20.18,35.66],right_bottom:[341.58,600.99]
class_id:0, confidence:0.9914, left_top:[19.77,611.42],right_bottom:[341.48,901.82]
class_id:0, confidence:0.9904, left_top:[369.36,375.10],right_bottom:[691.29,600.59]
class_id:0, confidence:0.9835, left_top:[369.60,608.60],right_bottom:[691.38,736.72]
class_id:0, confidence:0.9830, left_top:[369.58,805.38],right_bottom:[690.97,901.80]
class_id:0, confidence:0.9716, left_top:[383.68,271.44],right_bottom:[688.93,335.39]
class_id:0, confidence:0.9452, left_top:[370.82,34.48],right_bottom:[688.10,63.54]
class_id:1, confidence:0.8712, left_top:[370.84,771.03],right_bottom:[519.30,789.13]
class_id:3, confidence:0.9856, left_top:[371.28,67.85],right_bottom:[685.73,267.72]
save result to: output/layout.jpg
Test iter 0
------------------ Inference Time Info ----------------------
total_time(ms): 2196.0, img_num: 1
average latency time(ms): 2196.00, QPS: 0.455373
preprocess_time(ms): 2172.50, inference_time(ms): 11.90, postprocess_time(ms): 11.60
```
- Model模型结构
- Transform Order预处理操作
- class_id、confidence、left_top、right_bottom分别表示类别id、置信度、左上角坐标、右下角坐标
- save result to可视化版面分析结果保存路径默认保存到`./output`文件夹
- Inference Time Info推理时间其中preprocess_time表示预处理耗时inference_time表示模型预测耗时postprocess_time表示后处理耗时
可视化版面结果如下图所示
<div align="center">
<img src="../docs/layout/layout_res.jpg" width="800">
</div>
## Citations
```
@inproceedings{zhong2019publaynet,
title={PubLayNet: largest dataset ever for document layout analysis},
author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
year={2019},
volume={},
number={},
pages={1015-1022},
doi={10.1109/ICDAR.2019.00166},
ISSN={1520-5363},
month={Sep.},
organization={IEEE}
}
@inproceedings{yang2022focal,
title={Focal and global knowledge distillation for detectors},
author={Yang, Zhendong and Li, Zhe and Jiang, Xiaohu and Gong, Yuan and Yuan, Zehuan and Zhao, Danpei and Yuan, Chun},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={4643--4652},
year={2022}
}
```