liuhongen1234567 cf26f2330e
Latexocr paddle (#13401)
* commit_test

* modified:   configs/rec/rec_latex_ocr.yml
	deleted:    ppocr/modeling/backbones/rec_resnetv2.py

* ntuple_solve

* style

* style

* style

* style

* style

* style

* style

* style

* style

* delete comment

* cla_email
2024-07-22 11:50:23 +08:00

71 lines
2.3 KiB
Python

# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from tqdm import tqdm
import os
import cv2
import imagesize
from collections import defaultdict
import glob
from os.path import join
import argparse
def txt2pickle(images, equations, save_dir):
save_p = os.path.join(save_dir, "latexocr_{}.pkl".format(images.split("/")[-1]))
min_dimensions = (32, 32)
max_dimensions = (672, 192)
max_length = 512
data = defaultdict(lambda: [])
if images is not None and equations is not None:
images_list = [
path.replace("\\", "/") for path in glob.glob(join(images, "*.png"))
]
indices = [int(os.path.basename(img).split(".")[0]) for img in images_list]
eqs = open(equations, "r").read().split("\n")
for i, im in tqdm(enumerate(images_list), total=len(images_list)):
width, height = imagesize.get(im)
if (
min_dimensions[0] <= width <= max_dimensions[0]
and min_dimensions[1] <= height <= max_dimensions[1]
):
data[(width, height)].append((eqs[indices[i]], im))
data = dict(data)
with open(save_p, "wb") as file:
pickle.dump(data, file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--image_dir",
type=str,
default=".",
help="Input_label or input path to be converted",
)
parser.add_argument(
"--mathtxt_path",
type=str,
default=".",
help="Input_label or input path to be converted",
)
parser.add_argument(
"--output_dir", type=str, default="out_label.txt", help="Output file name"
)
args = parser.parse_args()
txt2pickle(args.image_dir, args.mathtxt_path, args.output_dir)