255 lines
7.8 KiB
Python
255 lines
7.8 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
|
|
"""
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
import sys
|
|
import math
|
|
from paddle.nn.initializer import KaimingNormal, Constant
|
|
|
|
zeros_ = Constant(value=0.)
|
|
ones_ = Constant(value=1.)
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2D(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias_attr=False)
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
"""1x1 convolution"""
|
|
return nn.Conv2D(
|
|
in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)
|
|
|
|
|
|
def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
|
|
# [n_position]
|
|
positions = paddle.arange(0, n_position)
|
|
# [feat_dim]
|
|
dim_range = paddle.arange(0, feat_dim)
|
|
dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
|
|
# [n_position, feat_dim]
|
|
angles = paddle.unsqueeze(
|
|
positions, axis=1) / paddle.unsqueeze(
|
|
dim_range, axis=0)
|
|
angles = paddle.cast(angles, "float32")
|
|
angles[:, 0::2] = paddle.sin(angles[:, 0::2])
|
|
angles[:, 1::2] = paddle.cos(angles[:, 1::2])
|
|
return angles
|
|
|
|
|
|
class AsterBlock(nn.Layer):
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(AsterBlock, self).__init__()
|
|
self.conv1 = conv1x1(inplanes, planes, stride)
|
|
self.bn1 = nn.BatchNorm2D(planes)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2D(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
out += residual
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNet_ASTER(nn.Layer):
|
|
"""For aster or crnn"""
|
|
|
|
def __init__(self, with_lstm=True, n_group=1, in_channels=3):
|
|
super(ResNet_ASTER, self).__init__()
|
|
self.with_lstm = with_lstm
|
|
self.n_group = n_group
|
|
|
|
self.layer0 = nn.Sequential(
|
|
nn.Conv2D(
|
|
in_channels,
|
|
32,
|
|
kernel_size=(3, 3),
|
|
stride=1,
|
|
padding=1,
|
|
bias_attr=False),
|
|
nn.BatchNorm2D(32),
|
|
nn.ReLU())
|
|
|
|
self.inplanes = 32
|
|
self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50]
|
|
self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25]
|
|
self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25]
|
|
self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25]
|
|
self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25]
|
|
|
|
if with_lstm:
|
|
self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
|
|
self.out_channels = 2 * 256
|
|
else:
|
|
self.out_channels = 512
|
|
|
|
def _make_layer(self, planes, blocks, stride):
|
|
downsample = None
|
|
if stride != [1, 1] or self.inplanes != planes:
|
|
downsample = nn.Sequential(
|
|
conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
|
|
|
|
layers = []
|
|
layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes
|
|
for _ in range(1, blocks):
|
|
layers.append(AsterBlock(self.inplanes, planes))
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x0 = self.layer0(x)
|
|
x1 = self.layer1(x0)
|
|
x2 = self.layer2(x1)
|
|
x3 = self.layer3(x2)
|
|
x4 = self.layer4(x3)
|
|
x5 = self.layer5(x4)
|
|
|
|
cnn_feat = x5.squeeze(2) # [N, c, w]
|
|
cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
|
|
if self.with_lstm:
|
|
rnn_feat, _ = self.rnn(cnn_feat)
|
|
return rnn_feat
|
|
else:
|
|
return cnn_feat
|
|
|
|
|
|
class Block(nn.Layer):
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(Block, self).__init__()
|
|
self.conv1 = conv1x1(inplanes, planes)
|
|
self.bn1 = nn.BatchNorm2D(planes)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = conv3x3(planes, planes, stride)
|
|
self.bn2 = nn.BatchNorm2D(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
out += residual
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNet45(nn.Layer):
|
|
def __init__(self, in_channels=3, compress_layer=False):
|
|
super(ResNet45, self).__init__()
|
|
self.compress_layer = compress_layer
|
|
|
|
self.conv1_new = nn.Conv2D(
|
|
in_channels,
|
|
32,
|
|
kernel_size=(3, 3),
|
|
stride=1,
|
|
padding=1,
|
|
bias_attr=False)
|
|
self.bn1 = nn.BatchNorm2D(32)
|
|
self.relu = nn.ReLU()
|
|
|
|
self.inplanes = 32
|
|
self.layer1 = self._make_layer(32, 3, [2, 2]) # [32, 128]
|
|
self.layer2 = self._make_layer(64, 4, [2, 2]) # [16, 64]
|
|
self.layer3 = self._make_layer(128, 6, [2, 2]) # [8, 32]
|
|
self.layer4 = self._make_layer(256, 6, [1, 1]) # [8, 32]
|
|
self.layer5 = self._make_layer(512, 3, [1, 1]) # [8, 32]
|
|
|
|
if self.compress_layer:
|
|
self.layer6 = nn.Sequential(
|
|
nn.Conv2D(
|
|
512, 256, kernel_size=(3, 1), padding=(0, 0), stride=(1,
|
|
1)),
|
|
nn.BatchNorm(256),
|
|
nn.ReLU())
|
|
self.out_channels = 256
|
|
else:
|
|
self.out_channels = 512
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Conv2D):
|
|
KaimingNormal(m.weight)
|
|
elif isinstance(m, nn.BatchNorm):
|
|
ones_(m.weight)
|
|
zeros_(m.bias)
|
|
|
|
def _make_layer(self, planes, blocks, stride):
|
|
downsample = None
|
|
if stride != [1, 1] or self.inplanes != planes:
|
|
downsample = nn.Sequential(
|
|
conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))
|
|
|
|
layers = []
|
|
layers.append(Block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes
|
|
for _ in range(1, blocks):
|
|
layers.append(Block(self.inplanes, planes))
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1_new(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x1 = self.layer1(x)
|
|
x2 = self.layer2(x1)
|
|
x3 = self.layer3(x2)
|
|
x4 = self.layer4(x3)
|
|
x5 = self.layer5(x4)
|
|
|
|
if not self.compress_layer:
|
|
return x5
|
|
else:
|
|
x6 = self.layer6(x5)
|
|
return x6
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = ResNet45()
|
|
x = paddle.rand([1, 3, 64, 256])
|
|
x = paddle.to_tensor(x)
|
|
print(x.shape)
|
|
out = model(x)
|
|
print(out.shape)
|