PaddleOCR/ppocr/data/collate_fn.py

73 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import numbers
import numpy as np
from collections import defaultdict
class DictCollator(object):
"""
data batch
"""
def __call__(self, batch):
# todosupport batch operators
data_dict = defaultdict(list)
to_tensor_keys = []
for sample in batch:
for k, v in sample.items():
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
if k not in to_tensor_keys:
to_tensor_keys.append(k)
data_dict[k].append(v)
for k in to_tensor_keys:
data_dict[k] = paddle.to_tensor(data_dict[k])
return data_dict
class ListCollator(object):
"""
data batch
"""
def __call__(self, batch):
# todosupport batch operators
data_dict = defaultdict(list)
to_tensor_idxs = []
for sample in batch:
for idx, v in enumerate(sample):
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
if idx not in to_tensor_idxs:
to_tensor_idxs.append(idx)
data_dict[idx].append(v)
for idx in to_tensor_idxs:
data_dict[idx] = paddle.to_tensor(data_dict[idx])
return list(data_dict.values())
class SSLRotateCollate(object):
"""
bach: [
[(4*3xH*W), (4,)]
[(4*3xH*W), (4,)]
...
]
"""
def __call__(self, batch):
output = [np.concatenate(d, axis=0) for d in zip(*batch)]
return output