272 lines
9.0 KiB
Python
272 lines
9.0 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import os
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from paddle import ParamAttr
|
|
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
|
|
from paddle.regularizer import L2Decay
|
|
from paddle.nn.initializer import KaimingNormal
|
|
from paddle.utils.download import get_path_from_url
|
|
|
|
MODEL_URLS = {
|
|
"PPLCNet_x0.25":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams",
|
|
"PPLCNet_x0.35":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams",
|
|
"PPLCNet_x0.5":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams",
|
|
"PPLCNet_x0.75":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams",
|
|
"PPLCNet_x1.0":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams",
|
|
"PPLCNet_x1.5":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams",
|
|
"PPLCNet_x2.0":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams",
|
|
"PPLCNet_x2.5":
|
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams"
|
|
}
|
|
|
|
MODEL_STAGES_PATTERN = {
|
|
"PPLCNet": ["blocks2", "blocks3", "blocks4", "blocks5", "blocks6"]
|
|
}
|
|
|
|
__all__ = list(MODEL_URLS.keys())
|
|
|
|
# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
|
|
# k: kernel_size
|
|
# in_c: input channel number in depthwise block
|
|
# out_c: output channel number in depthwise block
|
|
# s: stride in depthwise block
|
|
# use_se: whether to use SE block
|
|
|
|
NET_CONFIG = {
|
|
"blocks2":
|
|
# k, in_c, out_c, s, use_se
|
|
[[3, 16, 32, 1, False]],
|
|
"blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
|
|
"blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
|
|
"blocks5":
|
|
[[3, 128, 256, 2, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False],
|
|
[5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
|
|
"blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
|
|
}
|
|
|
|
|
|
def make_divisible(v, divisor=8, min_value=None):
|
|
if min_value is None:
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
filter_size,
|
|
num_filters,
|
|
stride,
|
|
num_groups=1):
|
|
super().__init__()
|
|
|
|
self.conv = Conv2D(
|
|
in_channels=num_channels,
|
|
out_channels=num_filters,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=num_groups,
|
|
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
|
bias_attr=False)
|
|
|
|
self.bn = BatchNorm(
|
|
num_filters,
|
|
param_attr=ParamAttr(regularizer=L2Decay(0.0)),
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
|
|
self.hardswish = nn.Hardswish()
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.hardswish(x)
|
|
return x
|
|
|
|
|
|
class DepthwiseSeparable(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
stride,
|
|
dw_size=3,
|
|
use_se=False):
|
|
super().__init__()
|
|
self.use_se = use_se
|
|
self.dw_conv = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=num_channels,
|
|
filter_size=dw_size,
|
|
stride=stride,
|
|
num_groups=num_channels)
|
|
if use_se:
|
|
self.se = SEModule(num_channels)
|
|
self.pw_conv = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
filter_size=1,
|
|
num_filters=num_filters,
|
|
stride=1)
|
|
|
|
def forward(self, x):
|
|
x = self.dw_conv(x)
|
|
if self.use_se:
|
|
x = self.se(x)
|
|
x = self.pw_conv(x)
|
|
return x
|
|
|
|
|
|
class SEModule(nn.Layer):
|
|
def __init__(self, channel, reduction=4):
|
|
super().__init__()
|
|
self.avg_pool = AdaptiveAvgPool2D(1)
|
|
self.conv1 = Conv2D(
|
|
in_channels=channel,
|
|
out_channels=channel // reduction,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = Conv2D(
|
|
in_channels=channel // reduction,
|
|
out_channels=channel,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self.hardsigmoid = nn.Hardsigmoid()
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
x = self.avg_pool(x)
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.conv2(x)
|
|
x = self.hardsigmoid(x)
|
|
x = paddle.multiply(x=identity, y=x)
|
|
return x
|
|
|
|
|
|
class PPLCNet(nn.Layer):
|
|
def __init__(self,
|
|
in_channels=3,
|
|
scale=1.0,
|
|
pretrained=False,
|
|
use_ssld=False):
|
|
super().__init__()
|
|
self.out_channels = [
|
|
int(NET_CONFIG["blocks3"][-1][2] * scale),
|
|
int(NET_CONFIG["blocks4"][-1][2] * scale),
|
|
int(NET_CONFIG["blocks5"][-1][2] * scale),
|
|
int(NET_CONFIG["blocks6"][-1][2] * scale)
|
|
]
|
|
self.scale = scale
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
num_channels=in_channels,
|
|
filter_size=3,
|
|
num_filters=make_divisible(16 * scale),
|
|
stride=2)
|
|
|
|
self.blocks2 = nn.Sequential(* [
|
|
DepthwiseSeparable(
|
|
num_channels=make_divisible(in_c * scale),
|
|
num_filters=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
|
|
])
|
|
|
|
self.blocks3 = nn.Sequential(* [
|
|
DepthwiseSeparable(
|
|
num_channels=make_divisible(in_c * scale),
|
|
num_filters=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
|
|
])
|
|
|
|
self.blocks4 = nn.Sequential(* [
|
|
DepthwiseSeparable(
|
|
num_channels=make_divisible(in_c * scale),
|
|
num_filters=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
|
|
])
|
|
|
|
self.blocks5 = nn.Sequential(* [
|
|
DepthwiseSeparable(
|
|
num_channels=make_divisible(in_c * scale),
|
|
num_filters=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
|
|
])
|
|
|
|
self.blocks6 = nn.Sequential(* [
|
|
DepthwiseSeparable(
|
|
num_channels=make_divisible(in_c * scale),
|
|
num_filters=make_divisible(out_c * scale),
|
|
dw_size=k,
|
|
stride=s,
|
|
use_se=se)
|
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"])
|
|
])
|
|
|
|
if pretrained:
|
|
self._load_pretrained(
|
|
MODEL_URLS['PPLCNet_x{}'.format(scale)], use_ssld=use_ssld)
|
|
|
|
def forward(self, x):
|
|
outs = []
|
|
x = self.conv1(x)
|
|
x = self.blocks2(x)
|
|
x = self.blocks3(x)
|
|
outs.append(x)
|
|
x = self.blocks4(x)
|
|
outs.append(x)
|
|
x = self.blocks5(x)
|
|
outs.append(x)
|
|
x = self.blocks6(x)
|
|
outs.append(x)
|
|
return outs
|
|
|
|
def _load_pretrained(self, pretrained_url, use_ssld=False):
|
|
if use_ssld:
|
|
pretrained_url = pretrained_url.replace("_pretrained",
|
|
"_ssld_pretrained")
|
|
print(pretrained_url)
|
|
local_weight_path = get_path_from_url(
|
|
pretrained_url, os.path.expanduser("~/.paddleclas/weights"))
|
|
param_state_dict = paddle.load(local_weight_path)
|
|
self.set_dict(param_state_dict)
|
|
return
|