162 lines
5.8 KiB
Python
162 lines
5.8 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from .rec_postprocess import AttnLabelDecode
|
|
|
|
|
|
class TableLabelDecode(AttnLabelDecode):
|
|
""" """
|
|
|
|
def __init__(self, character_dict_path, **kwargs):
|
|
super(TableLabelDecode, self).__init__(character_dict_path)
|
|
self.td_token = ['<td>', '<td', '<td></td>']
|
|
|
|
def __call__(self, preds, batch=None):
|
|
structure_probs = preds['structure_probs']
|
|
bbox_preds = preds['loc_preds']
|
|
if isinstance(structure_probs, paddle.Tensor):
|
|
structure_probs = structure_probs.numpy()
|
|
if isinstance(bbox_preds, paddle.Tensor):
|
|
bbox_preds = bbox_preds.numpy()
|
|
shape_list = batch[-1]
|
|
result = self.decode(structure_probs, bbox_preds, shape_list)
|
|
if len(batch) == 1: # only contains shape
|
|
return result
|
|
|
|
label_decode_result = self.decode_label(batch)
|
|
return result, label_decode_result
|
|
|
|
def decode(self, structure_probs, bbox_preds, shape_list):
|
|
"""convert text-label into text-index.
|
|
"""
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
end_idx = self.dict[self.end_str]
|
|
|
|
structure_idx = structure_probs.argmax(axis=2)
|
|
structure_probs = structure_probs.max(axis=2)
|
|
|
|
structure_batch_list = []
|
|
bbox_batch_list = []
|
|
batch_size = len(structure_idx)
|
|
for batch_idx in range(batch_size):
|
|
structure_list = []
|
|
bbox_list = []
|
|
score_list = []
|
|
for idx in range(len(structure_idx[batch_idx])):
|
|
char_idx = int(structure_idx[batch_idx][idx])
|
|
if idx > 0 and char_idx == end_idx:
|
|
break
|
|
if char_idx in ignored_tokens:
|
|
continue
|
|
text = self.character[char_idx]
|
|
if text in self.td_token:
|
|
bbox = bbox_preds[batch_idx, idx]
|
|
bbox = self._bbox_decode(bbox, shape_list[batch_idx])
|
|
bbox_list.append(bbox)
|
|
structure_list.append(text)
|
|
score_list.append(structure_probs[batch_idx, idx])
|
|
structure_batch_list.append([structure_list, np.mean(score_list)])
|
|
bbox_batch_list.append(np.array(bbox_list))
|
|
result = {
|
|
'bbox_batch_list': bbox_batch_list,
|
|
'structure_batch_list': structure_batch_list,
|
|
}
|
|
return result
|
|
|
|
def decode_label(self, batch):
|
|
"""convert text-label into text-index.
|
|
"""
|
|
structure_idx = batch[1]
|
|
gt_bbox_list = batch[2]
|
|
shape_list = batch[-1]
|
|
ignored_tokens = self.get_ignored_tokens()
|
|
end_idx = self.dict[self.end_str]
|
|
|
|
structure_batch_list = []
|
|
bbox_batch_list = []
|
|
batch_size = len(structure_idx)
|
|
for batch_idx in range(batch_size):
|
|
structure_list = []
|
|
bbox_list = []
|
|
for idx in range(len(structure_idx[batch_idx])):
|
|
char_idx = int(structure_idx[batch_idx][idx])
|
|
if idx > 0 and char_idx == end_idx:
|
|
break
|
|
if char_idx in ignored_tokens:
|
|
continue
|
|
structure_list.append(self.character[char_idx])
|
|
|
|
bbox = gt_bbox_list[batch_idx][idx]
|
|
if bbox.sum() != 0:
|
|
bbox = self._bbox_decode(bbox, shape_list[batch_idx])
|
|
bbox_list.append(bbox)
|
|
structure_batch_list.append(structure_list)
|
|
bbox_batch_list.append(bbox_list)
|
|
result = {
|
|
'bbox_batch_list': bbox_batch_list,
|
|
'structure_batch_list': structure_batch_list,
|
|
}
|
|
return result
|
|
|
|
def _bbox_decode(self, bbox, shape):
|
|
h, w, ratio_h, ratio_w, pad_h, pad_w = shape
|
|
bbox[0::2] *= w
|
|
bbox[1::2] *= h
|
|
return bbox
|
|
|
|
|
|
class TableMasterLabelDecode(TableLabelDecode):
|
|
""" """
|
|
|
|
def __init__(self, character_dict_path, box_shape='ori', **kwargs):
|
|
super(TableMasterLabelDecode, self).__init__(character_dict_path)
|
|
self.box_shape = box_shape
|
|
assert box_shape in [
|
|
'ori', 'pad'
|
|
], 'The shape used for box normalization must be ori or pad'
|
|
|
|
def add_special_char(self, dict_character):
|
|
self.beg_str = '<SOS>'
|
|
self.end_str = '<EOS>'
|
|
self.unknown_str = '<UKN>'
|
|
self.pad_str = '<PAD>'
|
|
dict_character = dict_character
|
|
dict_character = dict_character + [
|
|
self.unknown_str, self.beg_str, self.end_str, self.pad_str
|
|
]
|
|
return dict_character
|
|
|
|
def get_ignored_tokens(self):
|
|
pad_idx = self.dict[self.pad_str]
|
|
start_idx = self.dict[self.beg_str]
|
|
end_idx = self.dict[self.end_str]
|
|
unknown_idx = self.dict[self.unknown_str]
|
|
return [start_idx, end_idx, pad_idx, unknown_idx]
|
|
|
|
def _bbox_decode(self, bbox, shape):
|
|
h, w, ratio_h, ratio_w, pad_h, pad_w = shape
|
|
if self.box_shape == 'pad':
|
|
h, w = pad_h, pad_w
|
|
bbox[0::2] *= w
|
|
bbox[1::2] *= h
|
|
bbox[0::2] /= ratio_w
|
|
bbox[1::2] /= ratio_h
|
|
x, y, w, h = bbox
|
|
x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2
|
|
bbox = np.array([x1, y1, x2, y2])
|
|
return bbox
|