208 lines
8.0 KiB
Python
208 lines
8.0 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# reference from : https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/kie/heads/sdmgr_head.py
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
|
|
|
|
class SDMGRHead(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
num_chars=92,
|
|
visual_dim=16,
|
|
fusion_dim=1024,
|
|
node_input=32,
|
|
node_embed=256,
|
|
edge_input=5,
|
|
edge_embed=256,
|
|
num_gnn=2,
|
|
num_classes=26,
|
|
bidirectional=False):
|
|
super().__init__()
|
|
|
|
self.fusion = Block([visual_dim, node_embed], node_embed, fusion_dim)
|
|
self.node_embed = nn.Embedding(num_chars, node_input, 0)
|
|
hidden = node_embed // 2 if bidirectional else node_embed
|
|
self.rnn = nn.LSTM(
|
|
input_size=node_input, hidden_size=hidden, num_layers=1)
|
|
self.edge_embed = nn.Linear(edge_input, edge_embed)
|
|
self.gnn_layers = nn.LayerList(
|
|
[GNNLayer(node_embed, edge_embed) for _ in range(num_gnn)])
|
|
self.node_cls = nn.Linear(node_embed, num_classes)
|
|
self.edge_cls = nn.Linear(edge_embed, 2)
|
|
|
|
def forward(self, input, targets):
|
|
relations, texts, x = input
|
|
node_nums, char_nums = [], []
|
|
for text in texts:
|
|
node_nums.append(text.shape[0])
|
|
char_nums.append(paddle.sum((text > -1).astype(int), axis=-1))
|
|
|
|
max_num = max([char_num.max() for char_num in char_nums])
|
|
all_nodes = paddle.concat([
|
|
paddle.concat(
|
|
[text, paddle.zeros(
|
|
(text.shape[0], max_num - text.shape[1]))], -1)
|
|
for text in texts
|
|
])
|
|
temp = paddle.clip(all_nodes, min=0).astype(int)
|
|
embed_nodes = self.node_embed(temp)
|
|
rnn_nodes, _ = self.rnn(embed_nodes)
|
|
|
|
b, h, w = rnn_nodes.shape
|
|
nodes = paddle.zeros([b, w])
|
|
all_nums = paddle.concat(char_nums)
|
|
valid = paddle.nonzero((all_nums > 0).astype(int))
|
|
temp_all_nums = (
|
|
paddle.gather(all_nums, valid) - 1).unsqueeze(-1).unsqueeze(-1)
|
|
temp_all_nums = paddle.expand(temp_all_nums, [
|
|
temp_all_nums.shape[0], temp_all_nums.shape[1], rnn_nodes.shape[-1]
|
|
])
|
|
temp_all_nodes = paddle.gather(rnn_nodes, valid)
|
|
N, C, A = temp_all_nodes.shape
|
|
one_hot = F.one_hot(
|
|
temp_all_nums[:, 0, :], num_classes=C).transpose([0, 2, 1])
|
|
one_hot = paddle.multiply(
|
|
temp_all_nodes, one_hot.astype("float32")).sum(axis=1, keepdim=True)
|
|
t = one_hot.expand([N, 1, A]).squeeze(1)
|
|
nodes = paddle.scatter(nodes, valid.squeeze(1), t)
|
|
|
|
if x is not None:
|
|
nodes = self.fusion([x, nodes])
|
|
|
|
all_edges = paddle.concat(
|
|
[rel.reshape([-1, rel.shape[-1]]) for rel in relations])
|
|
embed_edges = self.edge_embed(all_edges.astype('float32'))
|
|
embed_edges = F.normalize(embed_edges)
|
|
|
|
for gnn_layer in self.gnn_layers:
|
|
nodes, cat_nodes = gnn_layer(nodes, embed_edges, node_nums)
|
|
|
|
node_cls, edge_cls = self.node_cls(nodes), self.edge_cls(cat_nodes)
|
|
return node_cls, edge_cls
|
|
|
|
|
|
class GNNLayer(nn.Layer):
|
|
def __init__(self, node_dim=256, edge_dim=256):
|
|
super().__init__()
|
|
self.in_fc = nn.Linear(node_dim * 2 + edge_dim, node_dim)
|
|
self.coef_fc = nn.Linear(node_dim, 1)
|
|
self.out_fc = nn.Linear(node_dim, node_dim)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, nodes, edges, nums):
|
|
start, cat_nodes = 0, []
|
|
for num in nums:
|
|
sample_nodes = nodes[start:start + num]
|
|
cat_nodes.append(
|
|
paddle.concat([
|
|
paddle.expand(sample_nodes.unsqueeze(1), [-1, num, -1]),
|
|
paddle.expand(sample_nodes.unsqueeze(0), [num, -1, -1])
|
|
], -1).reshape([num**2, -1]))
|
|
start += num
|
|
cat_nodes = paddle.concat([paddle.concat(cat_nodes), edges], -1)
|
|
cat_nodes = self.relu(self.in_fc(cat_nodes))
|
|
coefs = self.coef_fc(cat_nodes)
|
|
|
|
start, residuals = 0, []
|
|
for num in nums:
|
|
residual = F.softmax(
|
|
-paddle.eye(num).unsqueeze(-1) * 1e9 +
|
|
coefs[start:start + num**2].reshape([num, num, -1]), 1)
|
|
residuals.append((residual * cat_nodes[start:start + num**2]
|
|
.reshape([num, num, -1])).sum(1))
|
|
start += num**2
|
|
|
|
nodes += self.relu(self.out_fc(paddle.concat(residuals)))
|
|
return [nodes, cat_nodes]
|
|
|
|
|
|
class Block(nn.Layer):
|
|
def __init__(self,
|
|
input_dims,
|
|
output_dim,
|
|
mm_dim=1600,
|
|
chunks=20,
|
|
rank=15,
|
|
shared=False,
|
|
dropout_input=0.,
|
|
dropout_pre_lin=0.,
|
|
dropout_output=0.,
|
|
pos_norm='before_cat'):
|
|
super().__init__()
|
|
self.rank = rank
|
|
self.dropout_input = dropout_input
|
|
self.dropout_pre_lin = dropout_pre_lin
|
|
self.dropout_output = dropout_output
|
|
assert (pos_norm in ['before_cat', 'after_cat'])
|
|
self.pos_norm = pos_norm
|
|
# Modules
|
|
self.linear0 = nn.Linear(input_dims[0], mm_dim)
|
|
self.linear1 = (self.linear0
|
|
if shared else nn.Linear(input_dims[1], mm_dim))
|
|
self.merge_linears0 = nn.LayerList()
|
|
self.merge_linears1 = nn.LayerList()
|
|
self.chunks = self.chunk_sizes(mm_dim, chunks)
|
|
for size in self.chunks:
|
|
ml0 = nn.Linear(size, size * rank)
|
|
self.merge_linears0.append(ml0)
|
|
ml1 = ml0 if shared else nn.Linear(size, size * rank)
|
|
self.merge_linears1.append(ml1)
|
|
self.linear_out = nn.Linear(mm_dim, output_dim)
|
|
|
|
def forward(self, x):
|
|
x0 = self.linear0(x[0])
|
|
x1 = self.linear1(x[1])
|
|
bs = x1.shape[0]
|
|
if self.dropout_input > 0:
|
|
x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
|
|
x1 = F.dropout(x1, p=self.dropout_input, training=self.training)
|
|
x0_chunks = paddle.split(x0, self.chunks, -1)
|
|
x1_chunks = paddle.split(x1, self.chunks, -1)
|
|
zs = []
|
|
for x0_c, x1_c, m0, m1 in zip(x0_chunks, x1_chunks, self.merge_linears0,
|
|
self.merge_linears1):
|
|
m = m0(x0_c) * m1(x1_c) # bs x split_size*rank
|
|
m = m.reshape([bs, self.rank, -1])
|
|
z = paddle.sum(m, 1)
|
|
if self.pos_norm == 'before_cat':
|
|
z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
|
|
z = F.normalize(z)
|
|
zs.append(z)
|
|
z = paddle.concat(zs, 1)
|
|
if self.pos_norm == 'after_cat':
|
|
z = paddle.sqrt(F.relu(z)) - paddle.sqrt(F.relu(-z))
|
|
z = F.normalize(z)
|
|
|
|
if self.dropout_pre_lin > 0:
|
|
z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)
|
|
z = self.linear_out(z)
|
|
if self.dropout_output > 0:
|
|
z = F.dropout(z, p=self.dropout_output, training=self.training)
|
|
return z
|
|
|
|
def chunk_sizes(self, dim, chunks):
|
|
split_size = (dim + chunks - 1) // chunks
|
|
sizes_list = [split_size] * chunks
|
|
sizes_list[-1] = sizes_list[-1] - (sum(sizes_list) - dim)
|
|
return sizes_list
|