mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
add a necessary check for checkpoints, if you miss the file prefix and it will not execute the checkpoints codes
134 lines
4.4 KiB
Python
Executable File
134 lines
4.4 KiB
Python
Executable File
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import errno
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
from .utility import initial_logger
|
|
import re
|
|
logger = initial_logger()
|
|
|
|
|
|
def _mkdir_if_not_exist(path):
|
|
"""
|
|
mkdir if not exists, ignore the exception when multiprocess mkdir together
|
|
"""
|
|
if not os.path.exists(path):
|
|
try:
|
|
os.makedirs(path)
|
|
except OSError as e:
|
|
if e.errno == errno.EEXIST and os.path.isdir(path):
|
|
logger.warning(
|
|
'be happy if some process has already created {}'.format(
|
|
path))
|
|
else:
|
|
raise OSError('Failed to mkdir {}'.format(path))
|
|
|
|
|
|
def _load_state(path):
|
|
if os.path.exists(path + '.pdopt'):
|
|
# XXX another hack to ignore the optimizer state
|
|
tmp = tempfile.mkdtemp()
|
|
dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
|
|
shutil.copy(path + '.pdparams', dst + '.pdparams')
|
|
state = fluid.io.load_program_state(dst)
|
|
shutil.rmtree(tmp)
|
|
else:
|
|
state = fluid.io.load_program_state(path)
|
|
return state
|
|
|
|
|
|
def load_params(exe, prog, path, ignore_params=[]):
|
|
"""
|
|
Load model from the given path.
|
|
Args:
|
|
exe (fluid.Executor): The fluid.Executor object.
|
|
prog (fluid.Program): load weight to which Program object.
|
|
path (string): URL string or loca model path.
|
|
ignore_params (list): ignore variable to load when finetuning.
|
|
It can be specified by finetune_exclude_pretrained_params
|
|
and the usage can refer to docs/advanced_tutorials/TRANSFER_LEARNING.md
|
|
"""
|
|
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
|
|
raise ValueError("Model pretrain path {} does not "
|
|
"exists.".format(path))
|
|
|
|
logger.info('Loading parameters from {}...'.format(path))
|
|
|
|
ignore_set = set()
|
|
state = _load_state(path)
|
|
|
|
# ignore the parameter which mismatch the shape
|
|
# between the model and pretrain weight.
|
|
all_var_shape = {}
|
|
for block in prog.blocks:
|
|
for param in block.all_parameters():
|
|
all_var_shape[param.name] = param.shape
|
|
ignore_set.update([
|
|
name for name, shape in all_var_shape.items()
|
|
if name in state and shape != state[name].shape
|
|
])
|
|
|
|
if ignore_params:
|
|
all_var_names = [var.name for var in prog.list_vars()]
|
|
ignore_list = filter(
|
|
lambda var: any([re.match(name, var) for name in ignore_params]),
|
|
all_var_names)
|
|
ignore_set.update(list(ignore_list))
|
|
|
|
if len(ignore_set) > 0:
|
|
for k in ignore_set:
|
|
if k in state:
|
|
logger.warning('variable {} not used'.format(k))
|
|
del state[k]
|
|
fluid.io.set_program_state(prog, state)
|
|
|
|
|
|
def init_model(config, program, exe):
|
|
"""
|
|
load model from checkpoint or pretrained_model
|
|
"""
|
|
checkpoints = config['Global'].get('checkpoints')
|
|
if checkpoints:
|
|
if os.path.exists(checkpoints + '.pdparams'):
|
|
path = checkpoints
|
|
fluid.load(program, path, exe)
|
|
logger.info("Finish initing model from {}".format(path))
|
|
else:
|
|
raise ValueError(
|
|
"Model checkpoints {} does not exists,"
|
|
"check if you lost the file prefix .".format(checkpoints + '.pdparams'))
|
|
|
|
pretrain_weights = config['Global'].get('pretrain_weights')
|
|
if pretrain_weights:
|
|
path = pretrain_weights
|
|
load_params(exe, program, path)
|
|
logger.info("Finish initing model from {}".format(path))
|
|
|
|
|
|
def save_model(program, model_path):
|
|
"""
|
|
save model to the target path
|
|
"""
|
|
fluid.save(program, model_path)
|
|
logger.info("Already save model in {}".format(model_path))
|