PaddleOCR/deploy/fastdeploy/kunlunxin/cpp/infer.cc

116 lines
4.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void KunlunXinInfer(const std::string &det_model_dir,
const std::string &cls_model_dir,
const std::string &rec_model_dir,
const std::string &rec_label_file,
const std::string &image_file) {
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
auto option = fastdeploy::RuntimeOption();
option.UseKunlunXin();
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
// The cls and rec model can inference a batch of images now.
// User could initialize the inference batch size and set them after create
// PP-OCR model.
int cls_batch_size = 1;
int rec_batch_size = 6;
auto det_model = fastdeploy::vision::ocr::DBDetector(
det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(
cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(
rec_model_file, rec_params_file, rec_label_file, rec_option);
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
// The classification model is optional, so the PP-OCR can also be connected
// in series as follows
// auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
auto ppocr_v3 =
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
// Set inference batch size for cls model and rec model, the value could be -1
// and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch
// size
// of the cls and rec models will be the same as the number of boxes detected
// by the det model.
ppocr_v3.SetClsBatchSize(cls_batch_size);
ppocr_v3.SetRecBatchSize(rec_batch_size);
if (!ppocr_v3.Initialized()) {
std::cerr << "Failed to initialize PP-OCR." << std::endl;
return;
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::OCRResult result;
if (!ppocr_v3.Predict(&im, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << result.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char *argv[]) {
if (argc < 6) {
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
"path/to/rec_model path/to/rec_label_file path/to/image "
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
"./ppocr_keys_v1.txt ./12.jpg"
<< std::endl;
return -1;
}
std::string det_model_dir = argv[1];
std::string cls_model_dir = argv[2];
std::string rec_model_dir = argv[3];
std::string rec_label_file = argv[4];
std::string test_image = argv[5];
KunlunXinInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file,
test_image);
return 0;
}