PaddleOCR/docs/ppocr/infer_deploy/Jetson_infer.en.md
SWHL 0529e2303e
docs: Add a new document site (#13375)
* docs: Add a new document site

* docs: Update comment setting

* chore(pre-commit): Remove rules of md and remove the size limits of 512kb

* chore(format): Run pre-commit in local

* ci(document): Change the default name of building document site.

* chore: Update .pre-commit-config.yaml
2024-07-24 20:00:15 +08:00

95 lines
3.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
typora-copy-images-to: images
comments: true
---
# Jetson Deployment for PaddleOCR
This section introduces the deployment of PaddleOCR on Jetson NX, TX2, nano, AGX and other series of hardware.
## 1. Prepare Environment
You need to prepare a Jetson development hardware. If you need TensorRT, you need to prepare the TensorRT environment. It is recommended to use TensorRT version 7.1.3;
### 1. Install PaddlePaddle in Jetson
The PaddlePaddle download [link](https://www.paddlepaddle.org.cn/inference/user_guides/download_lib.html#python)
Please select the appropriate installation package for your Jetpack version, cuda version, and trt version. Here, we download paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl.
Install PaddlePaddle
```bash linenums="1"
pip3 install -U paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl
```
### 2. Download PaddleOCR code and install dependencies
Clone the PaddleOCR code:
```bash linenums="1"
git clone https://github.com/PaddlePaddle/PaddleOCR
```
and install dependencies
```bash linenums="1"
cd PaddleOCR
pip3 install -r requirements.txt
```
- Note: Jetson hardware CPU is poor, dependency installation is slow, please wait patiently
## 2. Perform prediction
Obtain the PPOCR model from the [document](../model_list.en.md) model library. The following takes the PP-OCRv3 model as an example to introduce the use of the PPOCR model on Jetson:
Download and unzip the PP-OCRv3 models.
```bash linenums="1"
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
```
The text detection inference:
```bash linenums="1"
cd PaddleOCR
python3 tools/infer/predict_det.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --image_dir=./doc/imgs/french_0.jpg --use_gpu=True
```
After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the `./inference_results/` directory.
![](./images/det_res_french_0.jpg)
The text recognition inference:
```bash linenums="1"
python3 tools/infer/predict_det.py --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs_words/en/word_2.png --use_gpu=True --rec_image_shape="3,48,320"
```
After executing the command, the predicted information will be printed on the terminal, and the output is as follows:
```bash linenums="1"
[2022/04/28 15:41:45] root INFO: Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.98084533)
```
The text detection and text recognition inference:
```bash linenums="1"
python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/00057937.jpg --use_gpu=True --rec_image_shape="3,48,320"
```
After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the `./inference_results/` directory.
![](./images/00057937.jpg)
To enable TRT prediction, you only need to set `--use_tensorrt=True` on the basis of the above command:
```bash linenums="1"
python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/ --rec_image_shape="3,48,320" --use_gpu=True --use_tensorrt=True
```
For more ppocr model predictions, please refer to[document](../model_list.en.md)