PaddleOCR/ppocr/modeling/backbones/rec_vit.py

259 lines
8.4 KiB
Python

# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
import numpy as np
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
trunc_normal_ = TruncatedNormal(std=.02)
normal_ = Normal
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.num_heads = num_heads
self.dim = dim
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
qkv = paddle.reshape(self.qkv(x), (0, -1, 3, self.num_heads, self.dim //
self.num_heads)).transpose((2, 0, 3, 1, 4))
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2))))
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((0, -1, self.dim))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-6,
prenorm=True):
super().__init__()
if isinstance(norm_layer, str):
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
else:
self.norm1 = norm_layer(dim)
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
if isinstance(norm_layer, str):
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
else:
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.prenorm = prenorm
def forward(self, x):
if self.prenorm:
x = self.norm1(x + self.drop_path(self.mixer(x)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
else:
x = x + self.drop_path(self.mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ViT(nn.Layer):
def __init__(
self,
img_size=[32, 128],
patch_size=[4,4],
in_channels=3,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.1,
norm_layer='nn.LayerNorm',
epsilon=1e-6,
act='nn.GELU',
prenorm=False,
**kwargs):
super().__init__()
self.embed_dim = embed_dim
self.out_channels = embed_dim
self.prenorm = prenorm
self.patch_embed = nn.Conv2D(in_channels, embed_dim, patch_size, patch_size, padding=(0, 0))
self.pos_embed = self.create_parameter(
shape=[1, 257, embed_dim], default_initializer=zeros_)
self.add_parameter("pos_embed", self.pos_embed)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = np.linspace(0, drop_path_rate, depth)
self.blocks1 = nn.LayerList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=eval(act),
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
epsilon=epsilon,
prenorm=prenorm) for i in range(depth)
])
if not prenorm:
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
self.avg_pool = nn.AdaptiveAvgPool2D([1, 25])
self.last_conv = nn.Conv2D(
in_channels=embed_dim,
out_channels=self.out_channels,
kernel_size=1,
stride=1,
padding=0,
bias_attr=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=0.1, mode="downscale_in_infer")
trunc_normal_(self.pos_embed)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward(self, x):
x = self.patch_embed(x).flatten(2).transpose((0, 2, 1))
x = x + self.pos_embed[:, 1:, :] #[:, :paddle.shape(x)[1], :]
x = self.pos_drop(x)
for blk in self.blocks1:
x = blk(x)
if not self.prenorm:
x = self.norm(x)
x = self.avg_pool(x.transpose([0, 2, 1]).reshape(
[0, self.embed_dim, -1, 25]))
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
return x