771 lines
29 KiB
Python
771 lines
29 KiB
Python
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/drrg_targets.py
|
|
"""
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from ppocr.utils.utility import check_install
|
|
from numpy.linalg import norm
|
|
|
|
|
|
class DRRGTargets(object):
|
|
def __init__(
|
|
self,
|
|
orientation_thr=2.0,
|
|
resample_step=8.0,
|
|
num_min_comps=9,
|
|
num_max_comps=600,
|
|
min_width=8.0,
|
|
max_width=24.0,
|
|
center_region_shrink_ratio=0.3,
|
|
comp_shrink_ratio=1.0,
|
|
comp_w_h_ratio=0.3,
|
|
text_comp_nms_thr=0.25,
|
|
min_rand_half_height=8.0,
|
|
max_rand_half_height=24.0,
|
|
jitter_level=0.2,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.orientation_thr = orientation_thr
|
|
self.resample_step = resample_step
|
|
self.num_max_comps = num_max_comps
|
|
self.num_min_comps = num_min_comps
|
|
self.min_width = min_width
|
|
self.max_width = max_width
|
|
self.center_region_shrink_ratio = center_region_shrink_ratio
|
|
self.comp_shrink_ratio = comp_shrink_ratio
|
|
self.comp_w_h_ratio = comp_w_h_ratio
|
|
self.text_comp_nms_thr = text_comp_nms_thr
|
|
self.min_rand_half_height = min_rand_half_height
|
|
self.max_rand_half_height = max_rand_half_height
|
|
self.jitter_level = jitter_level
|
|
self.eps = 1e-8
|
|
|
|
def vector_angle(self, vec1, vec2):
|
|
if vec1.ndim > 1:
|
|
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps).reshape((-1, 1))
|
|
else:
|
|
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps)
|
|
if vec2.ndim > 1:
|
|
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps).reshape((-1, 1))
|
|
else:
|
|
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps)
|
|
return np.arccos(np.clip(np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))
|
|
|
|
def vector_slope(self, vec):
|
|
assert len(vec) == 2
|
|
return abs(vec[1] / (vec[0] + self.eps))
|
|
|
|
def vector_sin(self, vec):
|
|
assert len(vec) == 2
|
|
return vec[1] / (norm(vec) + self.eps)
|
|
|
|
def vector_cos(self, vec):
|
|
assert len(vec) == 2
|
|
return vec[0] / (norm(vec) + self.eps)
|
|
|
|
def find_head_tail(self, points, orientation_thr):
|
|
assert points.ndim == 2
|
|
assert points.shape[0] >= 4
|
|
assert points.shape[1] == 2
|
|
assert isinstance(orientation_thr, float)
|
|
|
|
if len(points) > 4:
|
|
pad_points = np.vstack([points, points[0]])
|
|
edge_vec = pad_points[1:] - pad_points[:-1]
|
|
|
|
theta_sum = []
|
|
adjacent_vec_theta = []
|
|
for i, edge_vec1 in enumerate(edge_vec):
|
|
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
|
|
adjacent_edge_vec = edge_vec[adjacent_ind]
|
|
temp_theta_sum = np.sum(self.vector_angle(edge_vec1, adjacent_edge_vec))
|
|
temp_adjacent_theta = self.vector_angle(
|
|
adjacent_edge_vec[0], adjacent_edge_vec[1]
|
|
)
|
|
theta_sum.append(temp_theta_sum)
|
|
adjacent_vec_theta.append(temp_adjacent_theta)
|
|
theta_sum_score = np.array(theta_sum) / np.pi
|
|
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
|
|
poly_center = np.mean(points, axis=0)
|
|
edge_dist = np.maximum(
|
|
norm(pad_points[1:] - poly_center, axis=-1),
|
|
norm(pad_points[:-1] - poly_center, axis=-1),
|
|
)
|
|
dist_score = edge_dist / (np.max(edge_dist) + self.eps)
|
|
position_score = np.zeros(len(edge_vec))
|
|
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
|
|
score += 0.35 * dist_score
|
|
if len(points) % 2 == 0:
|
|
position_score[(len(score) // 2 - 1)] += 1
|
|
position_score[-1] += 1
|
|
score += 0.1 * position_score
|
|
pad_score = np.concatenate([score, score])
|
|
score_matrix = np.zeros((len(score), len(score) - 3))
|
|
x = np.arange(len(score) - 3) / float(len(score) - 4)
|
|
gaussian = (
|
|
1.0
|
|
/ (np.sqrt(2.0 * np.pi) * 0.5)
|
|
* np.exp(-np.power((x - 0.5) / 0.5, 2.0) / 2)
|
|
)
|
|
gaussian = gaussian / np.max(gaussian)
|
|
for i in range(len(score)):
|
|
score_matrix[i, :] = (
|
|
score[i]
|
|
+ pad_score[(i + 2) : (i + len(score) - 1)] * gaussian * 0.3
|
|
)
|
|
|
|
head_start, tail_increment = np.unravel_index(
|
|
score_matrix.argmax(), score_matrix.shape
|
|
)
|
|
tail_start = (head_start + tail_increment + 2) % len(points)
|
|
head_end = (head_start + 1) % len(points)
|
|
tail_end = (tail_start + 1) % len(points)
|
|
|
|
if head_end > tail_end:
|
|
head_start, tail_start = tail_start, head_start
|
|
head_end, tail_end = tail_end, head_end
|
|
head_inds = [head_start, head_end]
|
|
tail_inds = [tail_start, tail_end]
|
|
else:
|
|
if self.vector_slope(points[1] - points[0]) + self.vector_slope(
|
|
points[3] - points[2]
|
|
) < self.vector_slope(points[2] - points[1]) + self.vector_slope(
|
|
points[0] - points[3]
|
|
):
|
|
horizontal_edge_inds = [[0, 1], [2, 3]]
|
|
vertical_edge_inds = [[3, 0], [1, 2]]
|
|
else:
|
|
horizontal_edge_inds = [[3, 0], [1, 2]]
|
|
vertical_edge_inds = [[0, 1], [2, 3]]
|
|
|
|
vertical_len_sum = norm(
|
|
points[vertical_edge_inds[0][0]] - points[vertical_edge_inds[0][1]]
|
|
) + norm(
|
|
points[vertical_edge_inds[1][0]] - points[vertical_edge_inds[1][1]]
|
|
)
|
|
horizontal_len_sum = norm(
|
|
points[horizontal_edge_inds[0][0]] - points[horizontal_edge_inds[0][1]]
|
|
) + norm(
|
|
points[horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1][1]]
|
|
)
|
|
|
|
if vertical_len_sum > horizontal_len_sum * orientation_thr:
|
|
head_inds = horizontal_edge_inds[0]
|
|
tail_inds = horizontal_edge_inds[1]
|
|
else:
|
|
head_inds = vertical_edge_inds[0]
|
|
tail_inds = vertical_edge_inds[1]
|
|
|
|
return head_inds, tail_inds
|
|
|
|
def reorder_poly_edge(self, points):
|
|
assert points.ndim == 2
|
|
assert points.shape[0] >= 4
|
|
assert points.shape[1] == 2
|
|
|
|
head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr)
|
|
head_edge, tail_edge = points[head_inds], points[tail_inds]
|
|
|
|
pad_points = np.vstack([points, points])
|
|
if tail_inds[1] < 1:
|
|
tail_inds[1] = len(points)
|
|
sideline1 = pad_points[head_inds[1] : tail_inds[1]]
|
|
sideline2 = pad_points[tail_inds[1] : (head_inds[1] + len(points))]
|
|
sideline_mean_shift = np.mean(sideline1, axis=0) - np.mean(sideline2, axis=0)
|
|
|
|
if sideline_mean_shift[1] > 0:
|
|
top_sideline, bot_sideline = sideline2, sideline1
|
|
else:
|
|
top_sideline, bot_sideline = sideline1, sideline2
|
|
|
|
return head_edge, tail_edge, top_sideline, bot_sideline
|
|
|
|
def cal_curve_length(self, line):
|
|
assert line.ndim == 2
|
|
assert len(line) >= 2
|
|
|
|
edges_length = np.sqrt(
|
|
(line[1:, 0] - line[:-1, 0]) ** 2 + (line[1:, 1] - line[:-1, 1]) ** 2
|
|
)
|
|
total_length = np.sum(edges_length)
|
|
return edges_length, total_length
|
|
|
|
def resample_line(self, line, n):
|
|
assert line.ndim == 2
|
|
assert line.shape[0] >= 2
|
|
assert line.shape[1] == 2
|
|
assert isinstance(n, int)
|
|
assert n > 2
|
|
|
|
edges_length, total_length = self.cal_curve_length(line)
|
|
t_org = np.insert(np.cumsum(edges_length), 0, 0)
|
|
unit_t = total_length / (n - 1)
|
|
t_equidistant = np.arange(1, n - 1, dtype=np.float32) * unit_t
|
|
edge_ind = 0
|
|
points = [line[0]]
|
|
for t in t_equidistant:
|
|
while edge_ind < len(edges_length) - 1 and t > t_org[edge_ind + 1]:
|
|
edge_ind += 1
|
|
t_l, t_r = t_org[edge_ind], t_org[edge_ind + 1]
|
|
weight = np.array([t_r - t, t - t_l], dtype=np.float32) / (
|
|
t_r - t_l + self.eps
|
|
)
|
|
p_coords = np.dot(weight, line[[edge_ind, edge_ind + 1]])
|
|
points.append(p_coords)
|
|
points.append(line[-1])
|
|
resampled_line = np.vstack(points)
|
|
|
|
return resampled_line
|
|
|
|
def resample_sidelines(self, sideline1, sideline2, resample_step):
|
|
assert sideline1.ndim == sideline2.ndim == 2
|
|
assert sideline1.shape[1] == sideline2.shape[1] == 2
|
|
assert sideline1.shape[0] >= 2
|
|
assert sideline2.shape[0] >= 2
|
|
assert isinstance(resample_step, float)
|
|
|
|
_, length1 = self.cal_curve_length(sideline1)
|
|
_, length2 = self.cal_curve_length(sideline2)
|
|
|
|
avg_length = (length1 + length2) / 2
|
|
resample_point_num = max(int(float(avg_length) / resample_step) + 1, 3)
|
|
|
|
resampled_line1 = self.resample_line(sideline1, resample_point_num)
|
|
resampled_line2 = self.resample_line(sideline2, resample_point_num)
|
|
|
|
return resampled_line1, resampled_line2
|
|
|
|
def dist_point2line(self, point, line):
|
|
assert isinstance(line, tuple)
|
|
point1, point2 = line
|
|
d = abs(np.cross(point2 - point1, point - point1)) / (
|
|
norm(point2 - point1) + 1e-8
|
|
)
|
|
return d
|
|
|
|
def draw_center_region_maps(
|
|
self,
|
|
top_line,
|
|
bot_line,
|
|
center_line,
|
|
center_region_mask,
|
|
top_height_map,
|
|
bot_height_map,
|
|
sin_map,
|
|
cos_map,
|
|
region_shrink_ratio,
|
|
):
|
|
assert top_line.shape == bot_line.shape == center_line.shape
|
|
assert (
|
|
center_region_mask.shape
|
|
== top_height_map.shape
|
|
== bot_height_map.shape
|
|
== sin_map.shape
|
|
== cos_map.shape
|
|
)
|
|
assert isinstance(region_shrink_ratio, float)
|
|
|
|
h, w = center_region_mask.shape
|
|
for i in range(0, len(center_line) - 1):
|
|
top_mid_point = (top_line[i] + top_line[i + 1]) / 2
|
|
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2
|
|
|
|
sin_theta = self.vector_sin(top_mid_point - bot_mid_point)
|
|
cos_theta = self.vector_cos(top_mid_point - bot_mid_point)
|
|
|
|
tl = center_line[i] + (top_line[i] - center_line[i]) * region_shrink_ratio
|
|
tr = (
|
|
center_line[i + 1]
|
|
+ (top_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
|
|
)
|
|
br = (
|
|
center_line[i + 1]
|
|
+ (bot_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
|
|
)
|
|
bl = center_line[i] + (bot_line[i] - center_line[i]) * region_shrink_ratio
|
|
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)
|
|
|
|
cv2.fillPoly(center_region_mask, [current_center_box], color=1)
|
|
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta)
|
|
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta)
|
|
|
|
current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0, w - 1)
|
|
current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0, h - 1)
|
|
min_coord = np.min(current_center_box, axis=0).astype(np.int32)
|
|
max_coord = np.max(current_center_box, axis=0).astype(np.int32)
|
|
current_center_box = current_center_box - min_coord
|
|
box_sz = max_coord - min_coord + 1
|
|
|
|
center_box_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8)
|
|
cv2.fillPoly(center_box_mask, [current_center_box], color=1)
|
|
|
|
inds = np.argwhere(center_box_mask > 0)
|
|
inds = inds + (min_coord[1], min_coord[0])
|
|
inds_xy = np.fliplr(inds)
|
|
top_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line(
|
|
inds_xy, (top_line[i], top_line[i + 1])
|
|
)
|
|
bot_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line(
|
|
inds_xy, (bot_line[i], bot_line[i + 1])
|
|
)
|
|
|
|
def generate_center_mask_attrib_maps(self, img_size, text_polys):
|
|
assert isinstance(img_size, tuple)
|
|
|
|
h, w = img_size
|
|
|
|
center_lines = []
|
|
center_region_mask = np.zeros((h, w), np.uint8)
|
|
top_height_map = np.zeros((h, w), dtype=np.float32)
|
|
bot_height_map = np.zeros((h, w), dtype=np.float32)
|
|
sin_map = np.zeros((h, w), dtype=np.float32)
|
|
cos_map = np.zeros((h, w), dtype=np.float32)
|
|
|
|
for poly in text_polys:
|
|
polygon_points = poly
|
|
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
|
|
resampled_top_line, resampled_bot_line = self.resample_sidelines(
|
|
top_line, bot_line, self.resample_step
|
|
)
|
|
resampled_bot_line = resampled_bot_line[::-1]
|
|
center_line = (resampled_top_line + resampled_bot_line) / 2
|
|
|
|
if self.vector_slope(center_line[-1] - center_line[0]) > 2:
|
|
if (center_line[-1] - center_line[0])[1] < 0:
|
|
center_line = center_line[::-1]
|
|
resampled_top_line = resampled_top_line[::-1]
|
|
resampled_bot_line = resampled_bot_line[::-1]
|
|
else:
|
|
if (center_line[-1] - center_line[0])[0] < 0:
|
|
center_line = center_line[::-1]
|
|
resampled_top_line = resampled_top_line[::-1]
|
|
resampled_bot_line = resampled_bot_line[::-1]
|
|
|
|
line_head_shrink_len = (
|
|
np.clip(
|
|
(norm(top_line[0] - bot_line[0]) * self.comp_w_h_ratio),
|
|
self.min_width,
|
|
self.max_width,
|
|
)
|
|
/ 2
|
|
)
|
|
line_tail_shrink_len = (
|
|
np.clip(
|
|
(norm(top_line[-1] - bot_line[-1]) * self.comp_w_h_ratio),
|
|
self.min_width,
|
|
self.max_width,
|
|
)
|
|
/ 2
|
|
)
|
|
num_head_shrink = int(line_head_shrink_len // self.resample_step)
|
|
num_tail_shrink = int(line_tail_shrink_len // self.resample_step)
|
|
if len(center_line) > num_head_shrink + num_tail_shrink + 2:
|
|
center_line = center_line[
|
|
num_head_shrink : len(center_line) - num_tail_shrink
|
|
]
|
|
resampled_top_line = resampled_top_line[
|
|
num_head_shrink : len(resampled_top_line) - num_tail_shrink
|
|
]
|
|
resampled_bot_line = resampled_bot_line[
|
|
num_head_shrink : len(resampled_bot_line) - num_tail_shrink
|
|
]
|
|
center_lines.append(center_line.astype(np.int32))
|
|
|
|
self.draw_center_region_maps(
|
|
resampled_top_line,
|
|
resampled_bot_line,
|
|
center_line,
|
|
center_region_mask,
|
|
top_height_map,
|
|
bot_height_map,
|
|
sin_map,
|
|
cos_map,
|
|
self.center_region_shrink_ratio,
|
|
)
|
|
|
|
return (
|
|
center_lines,
|
|
center_region_mask,
|
|
top_height_map,
|
|
bot_height_map,
|
|
sin_map,
|
|
cos_map,
|
|
)
|
|
|
|
def generate_rand_comp_attribs(self, num_rand_comps, center_sample_mask):
|
|
assert isinstance(num_rand_comps, int)
|
|
assert num_rand_comps > 0
|
|
assert center_sample_mask.ndim == 2
|
|
|
|
h, w = center_sample_mask.shape
|
|
|
|
max_rand_half_height = self.max_rand_half_height
|
|
min_rand_half_height = self.min_rand_half_height
|
|
max_rand_height = max_rand_half_height * 2
|
|
max_rand_width = np.clip(
|
|
max_rand_height * self.comp_w_h_ratio, self.min_width, self.max_width
|
|
)
|
|
margin = (
|
|
int(np.sqrt((max_rand_height / 2) ** 2 + (max_rand_width / 2) ** 2)) + 1
|
|
)
|
|
|
|
if 2 * margin + 1 > min(h, w):
|
|
assert min(h, w) > (np.sqrt(2) * (self.min_width + 1))
|
|
max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1)
|
|
min_rand_half_height = max(max_rand_half_height / 4, self.min_width / 2)
|
|
|
|
max_rand_height = max_rand_half_height * 2
|
|
max_rand_width = np.clip(
|
|
max_rand_height * self.comp_w_h_ratio, self.min_width, self.max_width
|
|
)
|
|
margin = (
|
|
int(np.sqrt((max_rand_height / 2) ** 2 + (max_rand_width / 2) ** 2)) + 1
|
|
)
|
|
|
|
inner_center_sample_mask = np.zeros_like(center_sample_mask)
|
|
inner_center_sample_mask[
|
|
margin : h - margin, margin : w - margin
|
|
] = center_sample_mask[margin : h - margin, margin : w - margin]
|
|
kernel_size = int(np.clip(max_rand_half_height, 7, 21))
|
|
inner_center_sample_mask = cv2.erode(
|
|
inner_center_sample_mask, np.ones((kernel_size, kernel_size), np.uint8)
|
|
)
|
|
|
|
center_candidates = np.argwhere(inner_center_sample_mask > 0)
|
|
num_center_candidates = len(center_candidates)
|
|
sample_inds = np.random.choice(num_center_candidates, num_rand_comps)
|
|
rand_centers = center_candidates[sample_inds]
|
|
|
|
rand_top_height = np.random.randint(
|
|
min_rand_half_height, max_rand_half_height, size=(len(rand_centers), 1)
|
|
)
|
|
rand_bot_height = np.random.randint(
|
|
min_rand_half_height, max_rand_half_height, size=(len(rand_centers), 1)
|
|
)
|
|
|
|
rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
|
|
rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
|
|
scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8))
|
|
rand_cos = rand_cos * scale
|
|
rand_sin = rand_sin * scale
|
|
|
|
height = rand_top_height + rand_bot_height
|
|
width = np.clip(height * self.comp_w_h_ratio, self.min_width, self.max_width)
|
|
|
|
rand_comp_attribs = np.hstack(
|
|
[
|
|
rand_centers[:, ::-1],
|
|
height,
|
|
width,
|
|
rand_cos,
|
|
rand_sin,
|
|
np.zeros_like(rand_sin),
|
|
]
|
|
).astype(np.float32)
|
|
|
|
return rand_comp_attribs
|
|
|
|
def jitter_comp_attribs(self, comp_attribs, jitter_level):
|
|
"""Jitter text components attributes.
|
|
|
|
Args:
|
|
comp_attribs (ndarray): The text component attributes.
|
|
jitter_level (float): The jitter level of text components
|
|
attributes.
|
|
|
|
Returns:
|
|
jittered_comp_attribs (ndarray): The jittered text component
|
|
attributes (x, y, h, w, cos, sin, comp_label).
|
|
"""
|
|
|
|
assert comp_attribs.shape[1] == 7
|
|
assert comp_attribs.shape[0] > 0
|
|
assert isinstance(jitter_level, float)
|
|
|
|
x = comp_attribs[:, 0].reshape((-1, 1))
|
|
y = comp_attribs[:, 1].reshape((-1, 1))
|
|
h = comp_attribs[:, 2].reshape((-1, 1))
|
|
w = comp_attribs[:, 3].reshape((-1, 1))
|
|
cos = comp_attribs[:, 4].reshape((-1, 1))
|
|
sin = comp_attribs[:, 5].reshape((-1, 1))
|
|
comp_labels = comp_attribs[:, 6].reshape((-1, 1))
|
|
|
|
x += (
|
|
(np.random.random(size=(len(comp_attribs), 1)) - 0.5)
|
|
* (h * np.abs(cos) + w * np.abs(sin))
|
|
* jitter_level
|
|
)
|
|
y += (
|
|
(np.random.random(size=(len(comp_attribs), 1)) - 0.5)
|
|
* (h * np.abs(sin) + w * np.abs(cos))
|
|
* jitter_level
|
|
)
|
|
|
|
h += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * h * jitter_level
|
|
w += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * w * jitter_level
|
|
|
|
cos += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * 2 * jitter_level
|
|
sin += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * 2 * jitter_level
|
|
|
|
scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8))
|
|
cos = cos * scale
|
|
sin = sin * scale
|
|
|
|
jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, comp_labels])
|
|
|
|
return jittered_comp_attribs
|
|
|
|
def generate_comp_attribs(
|
|
self,
|
|
center_lines,
|
|
text_mask,
|
|
center_region_mask,
|
|
top_height_map,
|
|
bot_height_map,
|
|
sin_map,
|
|
cos_map,
|
|
):
|
|
"""Generate text component attributes.
|
|
|
|
Args:
|
|
center_lines (list[ndarray]): The list of text center lines .
|
|
text_mask (ndarray): The text region mask.
|
|
center_region_mask (ndarray): The text center region mask.
|
|
top_height_map (ndarray): The map on which the distance from points
|
|
to top side lines will be drawn for each pixel in text center
|
|
regions.
|
|
bot_height_map (ndarray): The map on which the distance from points
|
|
to bottom side lines will be drawn for each pixel in text
|
|
center regions.
|
|
sin_map (ndarray): The sin(theta) map where theta is the angle
|
|
between vector (top point - bottom point) and vector (1, 0).
|
|
cos_map (ndarray): The cos(theta) map where theta is the angle
|
|
between vector (top point - bottom point) and vector (1, 0).
|
|
|
|
Returns:
|
|
pad_comp_attribs (ndarray): The padded text component attributes
|
|
of a fixed size.
|
|
"""
|
|
|
|
assert isinstance(center_lines, list)
|
|
assert (
|
|
text_mask.shape
|
|
== center_region_mask.shape
|
|
== top_height_map.shape
|
|
== bot_height_map.shape
|
|
== sin_map.shape
|
|
== cos_map.shape
|
|
)
|
|
|
|
center_lines_mask = np.zeros_like(center_region_mask)
|
|
cv2.polylines(center_lines_mask, center_lines, 0, 1, 1)
|
|
center_lines_mask = center_lines_mask * center_region_mask
|
|
comp_centers = np.argwhere(center_lines_mask > 0)
|
|
|
|
y = comp_centers[:, 0]
|
|
x = comp_centers[:, 1]
|
|
|
|
top_height = top_height_map[y, x].reshape((-1, 1)) * self.comp_shrink_ratio
|
|
bot_height = bot_height_map[y, x].reshape((-1, 1)) * self.comp_shrink_ratio
|
|
sin = sin_map[y, x].reshape((-1, 1))
|
|
cos = cos_map[y, x].reshape((-1, 1))
|
|
|
|
top_mid_points = comp_centers + np.hstack([top_height * sin, top_height * cos])
|
|
bot_mid_points = comp_centers - np.hstack([bot_height * sin, bot_height * cos])
|
|
|
|
width = (top_height + bot_height) * self.comp_w_h_ratio
|
|
width = np.clip(width, self.min_width, self.max_width)
|
|
r = width / 2
|
|
|
|
tl = top_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos])
|
|
tr = top_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos])
|
|
br = bot_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos])
|
|
bl = bot_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos])
|
|
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32)
|
|
|
|
score = np.ones((text_comps.shape[0], 1), dtype=np.float32)
|
|
text_comps = np.hstack([text_comps, score])
|
|
check_install("lanms", "lanms-neo")
|
|
from lanms import merge_quadrangle_n9 as la_nms
|
|
|
|
text_comps = la_nms(text_comps, self.text_comp_nms_thr)
|
|
|
|
if text_comps.shape[0] >= 1:
|
|
img_h, img_w = center_region_mask.shape
|
|
text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1)
|
|
text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1)
|
|
|
|
comp_centers = np.mean(
|
|
text_comps[:, 0:8].reshape((-1, 4, 2)), axis=1
|
|
).astype(np.int32)
|
|
x = comp_centers[:, 0]
|
|
y = comp_centers[:, 1]
|
|
|
|
height = (top_height_map[y, x] + bot_height_map[y, x]).reshape((-1, 1))
|
|
width = np.clip(
|
|
height * self.comp_w_h_ratio, self.min_width, self.max_width
|
|
)
|
|
|
|
cos = cos_map[y, x].reshape((-1, 1))
|
|
sin = sin_map[y, x].reshape((-1, 1))
|
|
|
|
_, comp_label_mask = cv2.connectedComponents(
|
|
center_region_mask, connectivity=8
|
|
)
|
|
comp_labels = comp_label_mask[y, x].reshape((-1, 1)).astype(np.float32)
|
|
|
|
x = x.reshape((-1, 1)).astype(np.float32)
|
|
y = y.reshape((-1, 1)).astype(np.float32)
|
|
comp_attribs = np.hstack([x, y, height, width, cos, sin, comp_labels])
|
|
comp_attribs = self.jitter_comp_attribs(comp_attribs, self.jitter_level)
|
|
|
|
if comp_attribs.shape[0] < self.num_min_comps:
|
|
num_rand_comps = self.num_min_comps - comp_attribs.shape[0]
|
|
rand_comp_attribs = self.generate_rand_comp_attribs(
|
|
num_rand_comps, 1 - text_mask
|
|
)
|
|
comp_attribs = np.vstack([comp_attribs, rand_comp_attribs])
|
|
else:
|
|
comp_attribs = self.generate_rand_comp_attribs(
|
|
self.num_min_comps, 1 - text_mask
|
|
)
|
|
|
|
num_comps = (
|
|
np.ones((comp_attribs.shape[0], 1), dtype=np.float32)
|
|
* comp_attribs.shape[0]
|
|
)
|
|
comp_attribs = np.hstack([num_comps, comp_attribs])
|
|
|
|
if comp_attribs.shape[0] > self.num_max_comps:
|
|
comp_attribs = comp_attribs[: self.num_max_comps, :]
|
|
comp_attribs[:, 0] = self.num_max_comps
|
|
|
|
pad_comp_attribs = np.zeros(
|
|
(self.num_max_comps, comp_attribs.shape[1]), dtype=np.float32
|
|
)
|
|
pad_comp_attribs[: comp_attribs.shape[0], :] = comp_attribs
|
|
|
|
return pad_comp_attribs
|
|
|
|
def generate_text_region_mask(self, img_size, text_polys):
|
|
"""Generate text center region mask and geometry attribute maps.
|
|
|
|
Args:
|
|
img_size (tuple): The image size (height, width).
|
|
text_polys (list[list[ndarray]]): The list of text polygons.
|
|
|
|
Returns:
|
|
text_region_mask (ndarray): The text region mask.
|
|
"""
|
|
|
|
assert isinstance(img_size, tuple)
|
|
|
|
h, w = img_size
|
|
text_region_mask = np.zeros((h, w), dtype=np.uint8)
|
|
|
|
for poly in text_polys:
|
|
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
|
|
cv2.fillPoly(text_region_mask, polygon, 1)
|
|
|
|
return text_region_mask
|
|
|
|
def generate_effective_mask(self, mask_size: tuple, polygons_ignore):
|
|
"""Generate effective mask by setting the ineffective regions to 0 and
|
|
effective regions to 1.
|
|
|
|
Args:
|
|
mask_size (tuple): The mask size.
|
|
polygons_ignore (list[[ndarray]]: The list of ignored text
|
|
polygons.
|
|
|
|
Returns:
|
|
mask (ndarray): The effective mask of (height, width).
|
|
"""
|
|
mask = np.ones(mask_size, dtype=np.uint8)
|
|
|
|
for poly in polygons_ignore:
|
|
instance = poly.astype(np.int32).reshape(1, -1, 2)
|
|
cv2.fillPoly(mask, instance, 0)
|
|
|
|
return mask
|
|
|
|
def generate_targets(self, data):
|
|
"""Generate the gt targets for DRRG.
|
|
|
|
Args:
|
|
data (dict): The input result dictionary.
|
|
|
|
Returns:
|
|
data (dict): The output result dictionary.
|
|
"""
|
|
|
|
assert isinstance(data, dict)
|
|
|
|
image = data["image"]
|
|
polygons = data["polys"]
|
|
ignore_tags = data["ignore_tags"]
|
|
h, w, _ = image.shape
|
|
|
|
polygon_masks = []
|
|
polygon_masks_ignore = []
|
|
for tag, polygon in zip(ignore_tags, polygons):
|
|
if tag is True:
|
|
polygon_masks_ignore.append(polygon)
|
|
else:
|
|
polygon_masks.append(polygon)
|
|
|
|
gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks)
|
|
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore)
|
|
(
|
|
center_lines,
|
|
gt_center_region_mask,
|
|
gt_top_height_map,
|
|
gt_bot_height_map,
|
|
gt_sin_map,
|
|
gt_cos_map,
|
|
) = self.generate_center_mask_attrib_maps((h, w), polygon_masks)
|
|
|
|
gt_comp_attribs = self.generate_comp_attribs(
|
|
center_lines,
|
|
gt_text_mask,
|
|
gt_center_region_mask,
|
|
gt_top_height_map,
|
|
gt_bot_height_map,
|
|
gt_sin_map,
|
|
gt_cos_map,
|
|
)
|
|
|
|
mapping = {
|
|
"gt_text_mask": gt_text_mask,
|
|
"gt_center_region_mask": gt_center_region_mask,
|
|
"gt_mask": gt_mask,
|
|
"gt_top_height_map": gt_top_height_map,
|
|
"gt_bot_height_map": gt_bot_height_map,
|
|
"gt_sin_map": gt_sin_map,
|
|
"gt_cos_map": gt_cos_map,
|
|
}
|
|
|
|
data.update(mapping)
|
|
data["gt_comp_attribs"] = gt_comp_attribs
|
|
return data
|
|
|
|
def __call__(self, data):
|
|
data = self.generate_targets(data)
|
|
return data
|