Wang Xin 045e5f6ac7
add pre-commit workflow (#11973)
* add pre-commit workflow

* run 'pre-commit run --all-files'

* setup python version
2024-04-21 21:46:20 +08:00

173 lines
5.9 KiB
Python
Executable File

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, "..", "..", "..")))
sys.path.append(os.path.abspath(os.path.join(__dir__, "..", "..", "..", "tools")))
import yaml
import paddle
import paddle.distributed as dist
paddle.seed(2)
from ppocr.data import build_dataloader, set_signal_handlers
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
import tools.program as program
import paddleslim
from paddleslim.dygraph.quant import QAT
import numpy as np
dist.get_world_size()
class PACT(paddle.nn.Layer):
def __init__(self):
super(PACT, self).__init__()
alpha_attr = paddle.ParamAttr(
name=self.full_name() + ".pact",
initializer=paddle.nn.initializer.Constant(value=20),
learning_rate=1.0,
regularizer=paddle.regularizer.L2Decay(2e-5),
)
self.alpha = self.create_parameter(shape=[1], attr=alpha_attr, dtype="float32")
def forward(self, x):
out_left = paddle.nn.functional.relu(x - self.alpha)
out_right = paddle.nn.functional.relu(-self.alpha - x)
x = x - out_left + out_right
return x
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
"weight_preprocess_type": None,
# activation preprocess type, default is None and no preprocessing is performed.
"activation_preprocess_type": None,
# weight quantize type, default is 'channel_wise_abs_max'
"weight_quantize_type": "channel_wise_abs_max",
# activation quantize type, default is 'moving_average_abs_max'
"activation_quantize_type": "moving_average_abs_max",
# weight quantize bit num, default is 8
"weight_bits": 8,
# activation quantize bit num, default is 8
"activation_bits": 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
"dtype": "int8",
# window size for 'range_abs_max' quantization. default is 10000
"window_size": 10000,
# The decay coefficient of moving average, default is 0.9
"moving_rate": 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
"quantizable_layer_type": ["Conv2D", "Linear"],
}
def sample_generator(loader):
def __reader__():
for indx, data in enumerate(loader):
images = np.array(data[0])
yield images
return __reader__
def sample_generator_layoutxlm_ser(loader):
def __reader__():
for indx, data in enumerate(loader):
input_ids = np.array(data[0])
bbox = np.array(data[1])
attention_mask = np.array(data[2])
token_type_ids = np.array(data[3])
images = np.array(data[4])
yield [input_ids, bbox, attention_mask, token_type_ids, images]
return __reader__
def main(config, device, logger, vdl_writer):
# init dist environment
if config["Global"]["distributed"]:
dist.init_parallel_env()
global_config = config["Global"]
# build dataloader
set_signal_handlers()
config["Train"]["loader"]["num_workers"] = 0
is_layoutxlm_ser = (
config["Architecture"]["model_type"] == "kie"
and config["Architecture"]["Backbone"]["name"] == "LayoutXLMForSer"
)
train_dataloader = build_dataloader(config, "Train", device, logger)
if config["Eval"]:
config["Eval"]["loader"]["num_workers"] = 0
valid_dataloader = build_dataloader(config, "Eval", device, logger)
if is_layoutxlm_ser:
train_dataloader = valid_dataloader
else:
valid_dataloader = None
paddle.enable_static()
exe = paddle.static.Executor(device)
if "inference_model" in global_config.keys(): # , 'inference_model'):
inference_model_dir = global_config["inference_model"]
else:
inference_model_dir = os.path.dirname(global_config["pretrained_model"])
if not (
os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel"))
and os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams"))
):
raise ValueError(
"Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantization"
)
if is_layoutxlm_ser:
generator = sample_generator_layoutxlm_ser(train_dataloader)
else:
generator = sample_generator(train_dataloader)
paddleslim.quant.quant_post_static(
executor=exe,
model_dir=inference_model_dir,
model_filename="inference.pdmodel",
params_filename="inference.pdiparams",
quantize_model_path=global_config["save_inference_dir"],
sample_generator=generator,
save_model_filename="inference.pdmodel",
save_params_filename="inference.pdiparams",
batch_size=1,
batch_nums=None,
)
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)