PaddleOCR/paddleocr/_pipelines/seal_recognition.py

338 lines
13 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..utils.cli import (
add_simple_inference_args,
get_subcommand_args,
perform_simple_inference,
str2bool,
)
from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor
from .utils import create_config_from_structure
class SealRecognition(PaddleXPipelineWrapper):
def __init__(
self,
doc_orientation_classify_model_name=None,
doc_orientation_classify_model_dir=None,
doc_unwarping_model_name=None,
doc_unwarping_model_dir=None,
layout_detection_model_name=None,
layout_detection_model_dir=None,
seal_text_detection_model_name=None,
seal_text_detection_model_dir=None,
text_recognition_model_name=None,
text_recognition_model_dir=None,
text_recognition_batch_size=None,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_layout_detection=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
seal_det_limit_side_len=None,
seal_det_limit_type=None,
seal_det_thresh=None,
seal_det_box_thresh=None,
seal_det_unclip_ratio=None,
seal_rec_score_thresh=None,
**kwargs,
):
self._params = {
"doc_orientation_classify_model_name": doc_orientation_classify_model_name,
"doc_orientation_classify_model_dir": doc_orientation_classify_model_dir,
"doc_unwarping_model_name": doc_unwarping_model_name,
"doc_unwarping_model_dir": doc_unwarping_model_dir,
"layout_detection_model_name": layout_detection_model_name,
"layout_detection_model_dir": layout_detection_model_dir,
"seal_text_detection_model_name": seal_text_detection_model_name,
"seal_text_detection_model_dir": seal_text_detection_model_dir,
"text_recognition_model_name": text_recognition_model_name,
"text_recognition_model_dir": text_recognition_model_dir,
"text_recognition_batch_size": text_recognition_batch_size,
"use_doc_orientation_classify": use_doc_orientation_classify,
"use_doc_unwarping": use_doc_unwarping,
"use_layout_detection": use_layout_detection,
"layout_threshold": layout_threshold,
"layout_nms": layout_nms,
"layout_unclip_ratio": layout_unclip_ratio,
"layout_merge_bboxes_mode": layout_merge_bboxes_mode,
"seal_det_limit_side_len": seal_det_limit_side_len,
"seal_det_limit_type": seal_det_limit_type,
"seal_det_thresh": seal_det_thresh,
"seal_det_box_thresh": seal_det_box_thresh,
"seal_det_unclip_ratio": seal_det_unclip_ratio,
"seal_rec_score_thresh": seal_rec_score_thresh,
}
super().__init__(**kwargs)
@property
def _paddlex_pipeline_name(self):
return "seal_recognition"
def predict(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
use_layout_detection=None,
layout_det_res=None,
layout_threshold=None,
layout_nms=None,
layout_unclip_ratio=None,
layout_merge_bboxes_mode=None,
seal_det_limit_side_len=None,
seal_det_limit_type=None,
seal_det_thresh=None,
seal_det_box_thresh=None,
seal_det_unclip_ratio=None,
seal_rec_score_thresh=None,
**kwargs,
):
result = []
for res in self.paddlex_pipeline.predict(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
use_layout_detection=use_layout_detection,
layout_det_res=layout_det_res,
layout_threshold=layout_threshold,
layout_nms=layout_nms,
layout_unclip_ratio=layout_unclip_ratio,
layout_merge_bboxes_mode=layout_merge_bboxes_mode,
seal_det_limit_side_len=seal_det_limit_side_len,
seal_det_limit_type=seal_det_limit_type,
seal_det_thresh=seal_det_thresh,
seal_det_box_thresh=seal_det_box_thresh,
seal_det_unclip_ratio=seal_det_unclip_ratio,
seal_rec_score_thresh=seal_rec_score_thresh,
**kwargs,
):
result.append(res)
return result
@classmethod
def get_cli_subcommand_executor(cls):
return SealRecognitionCLISubcommandExecutor()
def _get_paddlex_config_overrides(self):
STRUCTURE = {
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[
"doc_orientation_classify_model_name"
],
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[
"doc_orientation_classify_model_dir"
],
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[
"doc_unwarping_model_name"
],
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[
"doc_unwarping_model_dir"
],
"SubModules.LayoutDetection.model_name": self._params[
"layout_detection_model_name"
],
"SubModules.LayoutDetection.model_dir": self._params[
"layout_detection_model_dir"
],
"SubModules.LayoutDetection.threshold": self._params["layout_threshold"],
"SubModules.LayoutDetection.layout_nms": self._params["layout_nms"],
"SubModules.LayoutDetection.layout_unclip_ratio": self._params[
"layout_unclip_ratio"
],
"SubModules.LayoutDetection.layout_merge_bboxes_mode": self._params[
"layout_merge_bboxes_mode"
],
"SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[
"use_doc_orientation_classify"
],
"SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[
"use_doc_unwarping"
],
"SubPipelines.SealOCR.SubModules.TextDetection.model_name": self._params[
"seal_text_detection_model_name"
],
"SubPipelines.SealOCR.SubModules.TextDetection.model_dir": self._params[
"seal_text_detection_model_dir"
],
"SubPipelines.SealOCR.SubModules.TextDetection.limit_side_len": self._params[
"seal_det_limit_side_len"
],
"SubPipelines.SealOCR.SubModules.TextDetection.limit_type": self._params[
"seal_det_limit_type"
],
"SubPipelines.SealOCR.SubModules.TextDetection.thresh": self._params[
"seal_det_thresh"
],
"SubPipelines.SealOCR.SubModules.TextDetection.box_thresh": self._params[
"seal_det_box_thresh"
],
"SubPipelines.SealOCR.SubModules.TextDetection.unclip_ratio": self._params[
"seal_det_unclip_ratio"
],
"SubPipelines.SealOCR.SubModules.TextRecognition.model_name": self._params[
"text_recognition_model_name"
],
"SubPipelines.SealOCR.SubModules.TextRecognition.model_dir": self._params[
"text_recognition_model_dir"
],
"SubPipelines.SealOCR.SubModules.TextRecognition.batch_size": self._params[
"text_recognition_batch_size"
],
"SubPipelines.SealOCR.SubModules.TextRecognition.score_thresh": self._params[
"seal_rec_score_thresh"
],
"use_layout_detection": self._params["use_layout_detection"],
}
return create_config_from_structure(STRUCTURE)
class SealRecognitionCLISubcommandExecutor(PipelineCLISubcommandExecutor):
@property
def subparser_name(self):
return "seal_recognition"
def _update_subparser(self, subparser):
add_simple_inference_args(subparser)
subparser.add_argument(
"--doc_orientation_classify_model_name",
type=str,
help="Name of the document image orientation classification model.",
)
subparser.add_argument(
"--doc_orientation_classify_model_dir",
type=str,
help="Path to the document image orientation classification model directory.",
)
subparser.add_argument(
"--doc_unwarping_model_name",
type=str,
help="Name of the document image unwarping model.",
)
subparser.add_argument(
"--doc_unwarping_model_dir",
type=str,
help="Path to the document image unwarping model directory.",
)
subparser.add_argument(
"--layout_detection_model_name",
type=str,
help="Name of the layout detection model.",
)
subparser.add_argument(
"--layout_detection_model_dir",
type=str,
help="Path to the layout detection model directory.",
)
subparser.add_argument(
"--seal_text_detection_model_name",
type=str,
help="Name of the seal text detection model.",
)
subparser.add_argument(
"--seal_text_detection_model_dir",
type=str,
help="Path to the seal text detection model directory.",
)
subparser.add_argument(
"--text_recognition_model_name",
type=str,
help="Name of the text recognition model.",
)
subparser.add_argument(
"--text_recognition_model_dir",
type=str,
help="Path to the text recognition model directory.",
)
subparser.add_argument(
"--text_recognition_batch_size",
type=int,
help="Batch size for the text recognition model.",
)
subparser.add_argument(
"--use_doc_orientation_classify",
type=str2bool,
help="Whether to use the document image orientation classification model.",
)
subparser.add_argument(
"--use_doc_unwarping",
type=str2bool,
help="Whether to use the document image unwarping model.",
)
subparser.add_argument(
"--use_layout_detection",
type=str2bool,
help="Whether to use the layout detection model.",
)
subparser.add_argument(
"--layout_threshold",
type=float,
help="Threshold for layout detection model.",
)
subparser.add_argument(
"--layout_nms",
type=float,
help="Non-Maximum Suppression threshold for layout detection.",
)
subparser.add_argument(
"--layout_unclip_ratio",
type=float,
help="Layout detection expansion coefficient.",
)
subparser.add_argument(
"--layout_merge_bboxes_mode",
type=str,
help="Mode for merging bounding boxes in layout detection.",
)
subparser.add_argument(
"--seal_det_limit_side_len",
type=int,
help="This sets a limit on the side length of the input image for the seal text detection model.",
)
subparser.add_argument(
"--seal_det_limit_type",
type=str,
help="This determines how the side length limit is applied to the input image before feeding it into the seal text detection model.",
)
subparser.add_argument(
"--seal_det_thresh",
type=float,
help="Detection pixel threshold for the seal text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.",
)
subparser.add_argument(
"--seal_det_box_thresh",
type=float,
help="Detection box threshold for the seal text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.",
)
subparser.add_argument(
"--seal_det_unclip_ratio",
type=float,
help="Seal text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.",
)
subparser.add_argument(
"--seal_rec_score_thresh",
type=float,
help="Text recognition threshold. Text results with scores greater than this threshold are retained.",
)
def execute_with_args(self, args):
params = get_subcommand_args(args)
perform_simple_inference(SealRecognition, params)