zhoujun 68099c2d5b
add db for benchmark (#8959)
* Add custom detection and recognition model usage instructions in re

* update

* Add custom detection and recognition model usage instructions in re

* add db net for benchmark

* rename benckmark to PaddleOCR_benchmark

* add addict to req

* rename
2023-02-08 15:52:30 +08:00

179 lines
6.4 KiB
Python

# -*- coding: utf-8 -*-
# @Time : 2019/8/24 12:06
# @Author : zhoujun
import os
import sys
import pathlib
__dir__ = pathlib.Path(os.path.abspath(__file__))
sys.path.append(str(__dir__))
sys.path.append(str(__dir__.parent.parent))
import time
import cv2
import paddle
from data_loader import get_transforms
from models import build_model
from post_processing import get_post_processing
def resize_image(img, short_size):
height, width, _ = img.shape
if height < width:
new_height = short_size
new_width = new_height / height * width
else:
new_width = short_size
new_height = new_width / width * height
new_height = int(round(new_height / 32) * 32)
new_width = int(round(new_width / 32) * 32)
resized_img = cv2.resize(img, (new_width, new_height))
return resized_img
class PaddleModel:
def __init__(self, model_path, post_p_thre=0.7, gpu_id=None):
'''
初始化模型
:param model_path: 模型地址(可以是模型的参数或者参数和计算图一起保存的文件)
:param gpu_id: 在哪一块gpu上运行
'''
self.gpu_id = gpu_id
if self.gpu_id is not None and isinstance(
self.gpu_id, int) and paddle.device.is_compiled_with_cuda():
paddle.device.set_device("gpu:{}".format(self.gpu_id))
else:
paddle.device.set_device("cpu")
checkpoint = paddle.load(model_path)
config = checkpoint['config']
config['arch']['backbone']['pretrained'] = False
self.model = build_model(config['arch'])
self.post_process = get_post_processing(config['post_processing'])
self.post_process.box_thresh = post_p_thre
self.img_mode = config['dataset']['train']['dataset']['args'][
'img_mode']
self.model.set_state_dict(checkpoint['state_dict'])
self.model.eval()
self.transform = []
for t in config['dataset']['train']['dataset']['args']['transforms']:
if t['type'] in ['ToTensor', 'Normalize']:
self.transform.append(t)
self.transform = get_transforms(self.transform)
def predict(self,
img_path: str,
is_output_polygon=False,
short_size: int=1024):
'''
对传入的图像进行预测,支持图像地址,opecv 读取图片,偏慢
:param img_path: 图像地址
:param is_numpy:
:return:
'''
assert os.path.exists(img_path), 'file is not exists'
img = cv2.imread(img_path, 1 if self.img_mode != 'GRAY' else 0)
if self.img_mode == 'RGB':
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
img = resize_image(img, short_size)
# 将图片由(w,h)变为(1,img_channel,h,w)
tensor = self.transform(img)
tensor = tensor.unsqueeze_(0)
batch = {'shape': [(h, w)]}
with paddle.no_grad():
start = time.time()
preds = self.model(tensor)
box_list, score_list = self.post_process(
batch, preds, is_output_polygon=is_output_polygon)
box_list, score_list = box_list[0], score_list[0]
if len(box_list) > 0:
if is_output_polygon:
idx = [x.sum() > 0 for x in box_list]
box_list = [box_list[i] for i, v in enumerate(idx) if v]
score_list = [score_list[i] for i, v in enumerate(idx) if v]
else:
idx = box_list.reshape(box_list.shape[0], -1).sum(
axis=1) > 0 # 去掉全为0的框
box_list, score_list = box_list[idx], score_list[idx]
else:
box_list, score_list = [], []
t = time.time() - start
return preds[0, 0, :, :].detach().cpu().numpy(), box_list, score_list, t
def save_depoly(net, input, save_path):
input_spec = [
paddle.static.InputSpec(
shape=[None, 3, None, None], dtype="float32")
]
net = paddle.jit.to_static(net, input_spec=input_spec)
# save static model for inference directly
paddle.jit.save(net, save_path)
def init_args():
import argparse
parser = argparse.ArgumentParser(description='DBNet.paddle')
parser.add_argument('--model_path', default=r'model_best.pth', type=str)
parser.add_argument(
'--input_folder',
default='./test/input',
type=str,
help='img path for predict')
parser.add_argument(
'--output_folder',
default='./test/output',
type=str,
help='img path for output')
parser.add_argument('--gpu', default=0, type=int, help='gpu for inference')
parser.add_argument(
'--thre', default=0.3, type=float, help='the thresh of post_processing')
parser.add_argument(
'--polygon', action='store_true', help='output polygon or box')
parser.add_argument('--show', action='store_true', help='show result')
parser.add_argument(
'--save_result',
action='store_true',
help='save box and score to txt file')
args = parser.parse_args()
return args
if __name__ == '__main__':
import pathlib
from tqdm import tqdm
import matplotlib.pyplot as plt
from utils.util import show_img, draw_bbox, save_result, get_image_file_list
args = init_args()
print(args)
# 初始化网络
model = PaddleModel(args.model_path, post_p_thre=args.thre, gpu_id=args.gpu)
img_folder = pathlib.Path(args.input_folder)
for img_path in tqdm(get_image_file_list(args.input_folder)):
preds, boxes_list, score_list, t = model.predict(
img_path, is_output_polygon=args.polygon)
img = draw_bbox(cv2.imread(img_path)[:, :, ::-1], boxes_list)
if args.show:
show_img(preds)
show_img(img, title=os.path.basename(img_path))
plt.show()
# 保存结果到路径
os.makedirs(args.output_folder, exist_ok=True)
img_path = pathlib.Path(img_path)
output_path = os.path.join(args.output_folder,
img_path.stem + '_result.jpg')
pred_path = os.path.join(args.output_folder,
img_path.stem + '_pred.jpg')
cv2.imwrite(output_path, img[:, :, ::-1])
cv2.imwrite(pred_path, preds * 255)
save_result(
output_path.replace('_result.jpg', '.txt'), boxes_list, score_list,
args.polygon)