mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
* Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md (#10616) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update README.md * Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:Release/2.7 (#10655) * Don't break overall processing on a bad image * Add preprocessing common to OCR tasks Add preprocessing to options * Update requirements.txt (#10656) added missing pyyaml library * [TIPC]update xpu tipc script (#10658) * fix-typo (#10642) Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> * 修改数据增强导致的DSR报错 (#10662) (#10681) * 修改数据增强导致的DSR报错 * 错误修改回滚 * Update algorithm_overview_en.md (#10670) Fixed simple spelling errors. * Implement recoginition method ParseQ * Document update for new recognition method ParseQ * add prediction for parseq * Update rec_vit_parseq.yml * Update rec_r31_sar.yml * Update rec_r31_sar.yml * Update rec_r50_fpn_srn.yml * Update rec_vit_parseq.py * Update rec_vit_parseq.yml * Update rec_parseq_head.py * Update rec_img_aug.py * Update rec_vit_parseq.yml * Update __init__.py * Update predict_rec.py * Update paddleocr.py * Update requirements.txt * Update utility.py * Update utility.py --------- Co-authored-by: xiaoting <31891223+tink2123@users.noreply.github.com> Co-authored-by: topduke <784990967@qq.com> Co-authored-by: dyning <dyning.2003@163.com> Co-authored-by: UserUnknownFactor <63057995+UserUnknownFactor@users.noreply.github.com> Co-authored-by: itasli <ilyas.tasli@outlook.fr> Co-authored-by: Kai Song <50285351+USTCKAY@users.noreply.github.com> Co-authored-by: dvorst <87502756+dvorst@users.noreply.github.com> Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> Co-authored-by: Dec20B <1192152456@qq.com> Co-authored-by: ncoffman <51147417+ncoffman@users.noreply.github.com>
4.1 KiB
4.1 KiB
ParseQ
1. 算法简介
论文信息:
Scene Text Recognition with Permuted Autoregressive Sequence Models Darwin Bautista, Rowel Atienza ECCV, 2021
原论文分别使用真实文本识别数据集(Real)和合成文本识别数据集(Synth)进行训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估。 其中:
- 真实文本识别数据集(Real)包含COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR, OpenVINO数据集
- 合成文本识别数据集(Synth)包含MJSynth和SynthText数据集
在不同数据集上训练的算法的复现效果如下:
数据集 | 模型 | 骨干网络 | 配置文件 | Acc | 下载链接 |
---|---|---|---|---|---|
Synth | ParseQ | VIT | rec_vit_parseq.yml | 91.24% | 训练模型 |
Real | ParseQ | VIT | rec_vit_parseq.yml | 94.74% | 训练模型 |
2. 环境配置
请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。
3. 模型训练、评估、预测
请参考文本识别教程。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要更换配置文件即可。
训练
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml
评估
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
预测:
# 预测使用的配置文件必须与训练一致
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
4. 推理部署
4.1 Python推理
首先将ParseQ文本识别训练过程中保存的模型,转换成inference model。( 模型下载地址 ),可以使用如下命令进行转换:
python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq
ParseQ文本识别模型推理,可以执行如下命令:
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False
4.2 C++推理
由于C++预处理后处理还未支持ParseQ,所以暂未支持
4.3 Serving服务化部署
暂不支持
4.4 更多推理部署
暂不支持
5. FAQ
引用
@InProceedings{bautista2022parseq,
title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
author={Bautista, Darwin and Atienza, Rowel},
booktitle={European Conference on Computer Vision},
pages={178--196},
month={10},
year={2022},
publisher={Springer Nature Switzerland},
address={Cham},
doi={10.1007/978-3-031-19815-1_11},
url={https://doi.org/10.1007/978-3-031-19815-1_11}
}