The code and the DIW dataset for "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022)
 
 
 
Go to file
SWHL 3647958e9c
Update README (#12)
2022-12-20 00:04:24 -05:00
configs initial commit 2022-04-17 21:50:36 -04:00
data add diw file list 2022-04-17 22:44:54 -04:00
eval initial commit 2022-04-17 21:50:36 -04:00
images Add the demo of inferring one image. (#7) 2022-10-23 01:56:27 -04:00
networks initial commit 2022-04-17 21:50:36 -04:00
utils initial commit 2022-04-17 21:50:36 -04:00
.gitignore Add requirements.txt, remove .vscode folder and add hugging face demo. (#8) 2022-10-26 00:18:36 -04:00
LICENSE Initial commit 2022-04-17 21:44:16 -04:00
README.md Update README (#12) 2022-12-20 00:04:24 -05:00
demo.py Add the demo of inferring one image. (#7) 2022-10-23 01:56:27 -04:00
eval.py initial commit 2022-04-17 21:50:36 -04:00
eval.sh initial commit 2022-04-17 21:50:36 -04:00
requirements.txt Add requirements.txt, remove .vscode folder and add hugging face demo. (#8) 2022-10-26 00:18:36 -04:00
train.py initial commit 2022-04-17 21:50:36 -04:00
train.sh initial commit 2022-04-17 21:50:36 -04:00

README.md

PaperEdge


The code and the DIW dataset for "Learning From Documents in the Wild to Improve Document Unwarping" (SIGGRAPH 2022)

[paper] [supplementary material] image

Documents In the Wild (DIW) dataset (2.13GB)

link

Pretrained models (139.7MB each)

Enet

Tnet

DocUNet benchmark results

docunet_benchmark_paperedge.zip

The last row of adres.txt is the evaluation results. The values in the last 3 columns are AD, MS-SSIM, and LD.

Infer one image.

  1. Download the pretrained model to the models directory.
  2. Run the demo.py by the following code:
    $ python demo.py --Enet_ckpt 'models/G_w_checkpoint_13820.pt' \
                     --Tnet_ckpt 'models/L_w_checkpoint_27640.pt' \
                     --img_path 'images/1.jpg' \
                     --out_dir 'output'
    
  3. The final result: compare