PyRetri/main/extract_feature.py

53 lines
1.8 KiB
Python
Raw Permalink Normal View History

2020-04-02 14:00:49 +08:00
# -*- coding: utf-8 -*-
import argparse
import os
import torch
2020-04-15 14:44:22 +08:00
from pyretri.config import get_defaults_cfg, setup_cfg
from pyretri.datasets import build_folder, build_loader
from pyretri.models import build_model
from pyretri.extract import build_extract_helper
2020-04-02 14:00:49 +08:00
from torchvision import models
def parse_args():
parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval')
parser.add_argument('opts', default=None, nargs=argparse.REMAINDER)
parser.add_argument('--data_json', '-dj', default=None, type=str, help='json file for dataset to be extracted')
parser.add_argument('--save_path', '-sp', default=None, type=str, help='save path for features')
parser.add_argument('--config_file', '-cfg', default=None, metavar='FILE', type=str, help='path to config file')
parser.add_argument('--save_interval', '-si', default=5000, type=int, help='number of features saved in one part file')
args = parser.parse_args()
return args
def main():
# init args
args = parse_args()
assert args.data_json is not None, 'the dataset json must be provided!'
assert args.save_path is not None, 'the save path must be provided!'
assert args.config_file is not None, 'a config file must be provided!'
# init and load retrieval pipeline settings
cfg = get_defaults_cfg()
cfg = setup_cfg(cfg, args.config_file, args.opts)
# build dataset and dataloader
dataset = build_folder(args.data_json, cfg.datasets)
dataloader = build_loader(dataset, cfg.datasets)
# build model
model = build_model(cfg.model)
# build helper and extract features
extract_helper = build_extract_helper(model, cfg.extract)
extract_helper.do_extract(dataloader, args.save_path, args.save_interval)
if __name__ == '__main__':
main()