mirror of https://github.com/PyRetri/PyRetri.git
upload
parent
0b23903d0b
commit
7348cb3fd1
|
@ -0,0 +1,81 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn" # name of the collate_fn.
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder" # name of the folder.
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["PadResize", "ToTensor", "Normalize"] # names of transformers.
|
||||
PadResize:
|
||||
size: 224 # target size of the longer edge.
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "resnet50" # name of the model.
|
||||
resnet50:
|
||||
load_checkpoint: "torchvision://resnet50" # path of the model checkpoint. If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop). 0 means concat these features and 1 means sum these features.
|
||||
assemble: 0
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "ResSeries" # name of the extractor.
|
||||
ResSeries:
|
||||
extract_features: ["pool5"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["GeM"] # names of aggregators.
|
||||
|
||||
index:
|
||||
# path of the query set features and gallery set features.
|
||||
query_fea_dir: "/data/features/best_features/caltech/query"
|
||||
gallery_fea_dir: "/data/features/best_features/caltech/gallery"
|
||||
|
||||
# name of the features to be loaded. It should be "output feature map" + "_" + "aggregation".
|
||||
# If there are multiple elements in the list, they will be concatenated on the channel-wise.
|
||||
feature_names: ["pool5_GeM"]
|
||||
|
||||
# a list of dimension process functions.
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"] # names of dimension processors.
|
||||
PCA:
|
||||
proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done.
|
||||
whiten: False # whether do whiten when using PCA.
|
||||
train_fea_dir: "/data/features/best_features/caltech/gallery" # path of the features for training PCA.
|
||||
l2: True # whether do l2-normalization on the training features.
|
||||
|
||||
# function for enhancing the quality of features.
|
||||
feature_enhancer:
|
||||
name: "Identity" # name of the feature enhancer.
|
||||
|
||||
# function for calculating the distance between query features and gallery features.
|
||||
metric:
|
||||
name: "KNN" # name of the metric.
|
||||
|
||||
# function for re-ranking the results.
|
||||
re_ranker:
|
||||
name: "Identity" # name of the re-ranker.
|
||||
|
||||
evaluate:
|
||||
# function for evaluating results.
|
||||
evaluator:
|
||||
name: "OverAll" # name of the evaluator.
|
||||
|
|
@ -0,0 +1,72 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
batch_size: 16
|
||||
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
transformers:
|
||||
names: ["PadResize", "ToTensor", "Normalize"]
|
||||
PadResize:
|
||||
size: 224
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "resnet50"
|
||||
resnet50:
|
||||
load_checkpoint: "torchvision://resnet50"
|
||||
|
||||
extract:
|
||||
assemble: 0
|
||||
|
||||
extractor:
|
||||
name: "ResSeries"
|
||||
ResSeries:
|
||||
extract_features: ["pool5"]
|
||||
|
||||
splitter:
|
||||
name: "Identity"
|
||||
|
||||
aggregators:
|
||||
names: ["GeM"]
|
||||
|
||||
index:
|
||||
query_fea_dir: "/data/features/best_features/caltech/query"
|
||||
gallery_fea_dir: "/data/features/best_features/caltech/gallery"
|
||||
|
||||
feature_names: ["pool5_GeM"]
|
||||
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"]
|
||||
PCA:
|
||||
proj_dim: 512
|
||||
whiten: False
|
||||
train_fea_dir: "/data/features/best_features/caltech/gallery"
|
||||
l2: True
|
||||
|
||||
feature_enhancer:
|
||||
name: "DBA"
|
||||
DBA:
|
||||
enhance_k: 10 # number of the nearest points to be calculated.
|
||||
|
||||
metric:
|
||||
name: "KNN"
|
||||
|
||||
re_ranker:
|
||||
name: "QEKR"
|
||||
QEKR:
|
||||
qe_times: 1 # number of query expansion times.
|
||||
qe_k: 10 # number of the neighbors to be combined.
|
||||
k1: 20 # hyper-parameter for calculating jaccard distance.
|
||||
k2: 6 # hyper-parameter for calculating local query expansion.
|
||||
lambda_value: 0.3 # hyper-parameter for calculating the final distance.
|
||||
|
||||
evaluate:
|
||||
evaluator:
|
||||
name: "OverAll"
|
|
@ -0,0 +1,83 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn" # name of the collate_fn.
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder" # name of the folder.
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["ShorterResize", "CenterCrop", "ToTensor", "Normalize"] # names of transformers.
|
||||
ShorterResize:
|
||||
size: 256 # target size of the shorter edge.
|
||||
CenterCrop:
|
||||
size: 224 # target size of the crop img.
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "resnet50" # name of the model.
|
||||
resnet50:
|
||||
load_checkpoint: "torchvision://resnet50" # path of the model checkpoint, If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop). 0 means concat these features and 1 means sum these features.
|
||||
assemble: 0
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "ResSeries" # name of the extractor.
|
||||
ResSeries:
|
||||
extract_features: ["pool5"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["SCDA"] # names of aggregators.
|
||||
|
||||
index:
|
||||
# path of the query set features and gallery set features.
|
||||
query_fea_dir: "/data/features/best_features/cub/query"
|
||||
gallery_fea_dir: "/data/features/best_features/cub/gallery"
|
||||
|
||||
# name of the features to be loaded. It should be "output feature map" + "_" + "aggregation".
|
||||
# If there are multiple elements in the list, they will be concatenated on the channel-wise.
|
||||
feature_names: ["pool5_SCDA"]
|
||||
|
||||
# a list of dimension process functions.
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"] # names of dimension processors.
|
||||
PCA:
|
||||
proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done.
|
||||
whiten: False # whether do whiten when using PCA.
|
||||
train_fea_dir: "/data/features/best_features/cub/gallery" # path of the features for training PCA.
|
||||
l2: True # whether do l2-normalization on the training features.
|
||||
|
||||
# function for enhancing the quality of features.
|
||||
feature_enhancer:
|
||||
name: "Identity" # name of the feature enhancer.
|
||||
|
||||
# function for calculating the distance between query features and gallery features.
|
||||
metric:
|
||||
name: "KNN" # name of the metric.
|
||||
|
||||
# function for re-ranking the results.
|
||||
re_ranker:
|
||||
name: "Identity" # name of the re-ranker.
|
||||
|
||||
evaluate:
|
||||
# function for evaluating results.
|
||||
evaluator:
|
||||
name: "OverAll" # name of the evaluator.
|
||||
|
|
@ -0,0 +1,71 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
batch_size: 16
|
||||
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
transformers:
|
||||
names: ["ShorterResize", "CenterCrop", "ToTensor", "Normalize"]
|
||||
ShorterResize:
|
||||
size: 256
|
||||
CenterCrop:
|
||||
size: 224
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "resnet50"
|
||||
resnet50:
|
||||
load_checkpoint: "torchvision://resnet50"
|
||||
|
||||
extract:
|
||||
assemble: 0
|
||||
|
||||
extractor:
|
||||
name: "ResSeries"
|
||||
ResSeries:
|
||||
extract_features: ["pool5"]
|
||||
|
||||
splitter:
|
||||
name: "Identity"
|
||||
|
||||
aggregators:
|
||||
names: ["SCDA"]
|
||||
|
||||
index:
|
||||
query_fea_dir: "/data/features/best_features/cub/query"
|
||||
gallery_fea_dir: "/data/features/best_features/cub/gallery"
|
||||
|
||||
feature_names: ["pool5_SCDA"]
|
||||
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"]
|
||||
PCA:
|
||||
proj_dim: 512
|
||||
whiten: False
|
||||
train_fea_dir: "/data/features/best_features/cub/gallery"
|
||||
l2: True
|
||||
|
||||
feature_enhancer:
|
||||
name: "Identity"
|
||||
|
||||
metric:
|
||||
name: "KNN"
|
||||
|
||||
re_ranker:
|
||||
name: "KReciprocal"
|
||||
KReciprocal:
|
||||
k1: 20 # hyper-parameter for calculating jaccard distance.
|
||||
k2: 6 # hyper-parameter for calculating local query expansion.
|
||||
lambda_value: 0.3 # hyper-parameter for calculating the final distance.
|
||||
|
||||
evaluate:
|
||||
evaluator:
|
||||
name: "OverAll"
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["DirectResize", "TwoFlip", "ToTensor", "Normalize"] # names of transformers.
|
||||
DirectResize:
|
||||
size: (256, 128) # target size of the output img.
|
||||
interpolation: 3 # nearest interpolation
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "ft_net" # name of the model.
|
||||
ft_net:
|
||||
load_checkpoint: "/home/songrenjie/projects/reID_baseline/model/ft_ResNet50/res50_duke.pth" # path of the model checkpoint, If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop). 0 means concat these features and 1 means sum these features.
|
||||
assemble: 1
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "ReIDSeries" # name of the extractor.
|
||||
ReIDSeries:
|
||||
extract_features: ["output"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["GAP"] # names of aggregators.
|
||||
|
||||
index:
|
||||
# path of the query set features and gallery set features.
|
||||
query_fea_dir: "/data/features/best_features/duke/query"
|
||||
gallery_fea_dir: "/data/features/best_features/duke/gallery"
|
||||
|
||||
# name of the features to be loaded. It should be "output feature map" + "_" + "aggregation".
|
||||
# If there are multiple elements in the list, they will be concatenated on the channel-wise.
|
||||
feature_names: ['output']
|
||||
|
||||
# a list of dimension process functions.
|
||||
dim_processors:
|
||||
names: ["L2Normalize"] # names of dimension processors.
|
||||
|
||||
# function for enhancing the quality of features.
|
||||
feature_enhancer:
|
||||
name: "Identity" # name of the feature enhancer.
|
||||
|
||||
# function for calculating the distance between query features and gallery features.
|
||||
metric:
|
||||
name: "KNN" # name of the metric.
|
||||
|
||||
# function for re-ranking the results.
|
||||
re_ranker:
|
||||
name: "Identity" # name of the re-ranker.
|
||||
|
||||
evaluate:
|
||||
# function for evaluating results.
|
||||
evaluator:
|
||||
name: "ReIDOverAll" # name of the evaluator.
|
||||
|
|
@ -0,0 +1,70 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
batch_size: 16
|
||||
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
transformers:
|
||||
names: ["DirectResize", "TwoFlip", "ToTensor", "Normalize"]
|
||||
DirectResize:
|
||||
size: (256, 128)
|
||||
interpolation: 3
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "ft_net"
|
||||
ft_net:
|
||||
load_checkpoint: "/home/songrenjie/projects/reID_baseline/model/ft_ResNet50/res50_duke.pth"
|
||||
|
||||
extract:
|
||||
assemble: 1
|
||||
|
||||
extractor:
|
||||
name: "ReIDSeries"
|
||||
ReIDSeries:
|
||||
extract_features: ["output"]
|
||||
|
||||
splitter:
|
||||
name: "Identity"
|
||||
|
||||
aggregators:
|
||||
names: ["GAP"]
|
||||
|
||||
index:
|
||||
query_fea_dir: "/data/features/best_features/duke/query"
|
||||
gallery_fea_dir: "/data/features/best_features/duke/gallery"
|
||||
|
||||
feature_names: ['output']
|
||||
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"]
|
||||
PCA:
|
||||
proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done.
|
||||
whiten: False # whether do whiten when using PCA.
|
||||
train_fea_dir: "/data/features/best_features/duke/gallery" # path of the features for training PCA.
|
||||
l2: True # whether do l2-normalization on the training features.
|
||||
|
||||
feature_enhancer:
|
||||
name: "Identity"
|
||||
|
||||
metric:
|
||||
name: "KNN"
|
||||
|
||||
re_ranker:
|
||||
name: "KReciprocal"
|
||||
KReciprocal:
|
||||
k1: 20 # hyper-parameter for calculating jaccard distance.
|
||||
k2: 6 # hyper-parameter for calculating local query expansion.
|
||||
lambda_value: 0.3 # hyper-parameter for calculating the final distance.
|
||||
|
||||
evaluate:
|
||||
evaluator:
|
||||
name: "ReIDOverAll"
|
||||
|
|
@ -0,0 +1,81 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["DirectResize", "ToTensor", "Normalize"] # names of transformers.
|
||||
DirectResize:
|
||||
size: (224, 224) # target size of the output img.
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "resnet50" # name of the model.
|
||||
resnet50:
|
||||
load_checkpoint: "/data/places365_model/res50_places365.pt" # path of the model checkpoint, If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop).. 0 means concat these features and 1 means sum these features.
|
||||
assemble: 0
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "ResSeries" # name of the extractor.
|
||||
ResSeries:
|
||||
extract_features: ["pool5"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["Crow"] # names of aggregators.
|
||||
|
||||
index:
|
||||
# path of the query set features and gallery set features.
|
||||
query_fea_dir: "/data/features/best_features/indoor/query"
|
||||
gallery_fea_dir: "/data/features/best_features/indoor/gallery"
|
||||
|
||||
# name of the features to be loaded. It should be "output feature map" + "_" + "aggregation".
|
||||
# If there are multiple elements in the list, they will be concatenated on the channel-wise.
|
||||
feature_names: ["pool5_Crow"]
|
||||
|
||||
# a list of dimension process functions.
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"]
|
||||
PCA:
|
||||
proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done.
|
||||
whiten: False # whether do whiten when using PCA.
|
||||
train_fea_dir: "/data/features/best_features/indoor/gallery" # path of the features for training PCA.
|
||||
l2: True # whether do l2-normalization on the training features.
|
||||
|
||||
# function for enhancing the quality of features.
|
||||
feature_enhancer:
|
||||
name: "Identity" # name of the feature enhancer.
|
||||
|
||||
# function for calculating the distance between query features and gallery features.
|
||||
metric:
|
||||
name: "KNN" # name of the metric.
|
||||
|
||||
# function for re-ranking the results.
|
||||
re_ranker:
|
||||
name: "Identity" # name of the re-ranker.
|
||||
|
||||
evaluate:
|
||||
# function for evaluating results.
|
||||
evaluator:
|
||||
name: "OverAll" # name of the evaluator.
|
||||
|
|
@ -0,0 +1,68 @@
|
|||
datasets:
|
||||
batch_size: 16
|
||||
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
transformers:
|
||||
names: ["DirectResize", "ToTensor", "Normalize"]
|
||||
DirectResize:
|
||||
size: (224, 224) #(448, 448) #(224, 224)
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "resnet50"
|
||||
resnet50:
|
||||
load_checkpoint: "/data/places365_model/res50_places365.pt"
|
||||
|
||||
extract:
|
||||
assemble: 0
|
||||
|
||||
extractor:
|
||||
name: "ResSeries"
|
||||
ResSeries:
|
||||
extract_features: ["pool5"]
|
||||
|
||||
splitter:
|
||||
name: "Identity"
|
||||
|
||||
aggregators:
|
||||
names: ["Crow"]
|
||||
|
||||
index:
|
||||
query_fea_dir: "/data/features/best_features/indoor/query"
|
||||
gallery_fea_dir: "/data/features/best_features/indoor/gallery"
|
||||
|
||||
feature_names: ["pool5_Crow"]
|
||||
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"]
|
||||
PCA:
|
||||
proj_dim: 512
|
||||
whiten: False
|
||||
train_fea_dir: "/data/features/best_features/indoor/gallery"
|
||||
l2: True
|
||||
|
||||
feature_enhancer:
|
||||
name: "DBA"
|
||||
DBA:
|
||||
enhance_k: 10 # number of the nearest points to be calculated.
|
||||
|
||||
metric:
|
||||
name: "KNN"
|
||||
|
||||
re_ranker:
|
||||
name: "QE"
|
||||
QE:
|
||||
qe_times: 1 # number of query expansion times.
|
||||
qe_k: 10 # number of the neighbors to be combined.
|
||||
|
||||
evaluate:
|
||||
evaluator:
|
||||
name: "OverAll"
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn" # name of the collate_fn.
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder" # name of the folder.
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["DirectResize", "TwoFlip", "ToTensor", "Normalize"] # names of transformers.
|
||||
DirectResize:
|
||||
size: (256, 128) # target size of the output img.
|
||||
interpolation: 3 # nearest interpolation
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "ft_net" # name of the model.
|
||||
ft_net:
|
||||
load_checkpoint: "/data/my_model_zoo/res50_market1501.pth" # path of the model checkpoint, If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop).. 0 means concat these features and 1 means sum these features.
|
||||
assemble: 1
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "ReIDSeries" # name of the extractor.
|
||||
ReIDSeries:
|
||||
extract_features: ["output"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["GAP"]
|
||||
|
||||
index:
|
||||
# path of the query set features and gallery set features.
|
||||
query_fea_dir: "/data/features/best_features/market/query"
|
||||
gallery_fea_dir: "/data/features/best_features/market/gallery"
|
||||
|
||||
# name of the features to be loaded. It should be "output feature map" + "_" + "aggregation".
|
||||
# If there are multiple elements in the list, they will be concatenated on the channel-wise.
|
||||
feature_names: ['output']
|
||||
|
||||
# a list of dimension process functions.
|
||||
dim_processors:
|
||||
names: ["L2Normalize"] # names of dimension processors.
|
||||
|
||||
# function for enhancing the quality of features.
|
||||
feature_enhancer:
|
||||
name: "Identity" # name of the feature enhancer.
|
||||
|
||||
# function for calculating the distance between query features and gallery features.
|
||||
metric:
|
||||
name: "KNN" # name of the metric.
|
||||
|
||||
# function for re-ranking the results.
|
||||
re_ranker:
|
||||
name: "Identity" # name of the re-ranker.
|
||||
|
||||
evaluate:
|
||||
# function for evaluating results.
|
||||
evaluator:
|
||||
name: "ReIDOverAll" # name of the evaluator.
|
||||
|
|
@ -0,0 +1,68 @@
|
|||
datasets:
|
||||
batch_size: 16
|
||||
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
transformers:
|
||||
names: ["DirectResize", "TwoFlip", "ToTensor", "Normalize"]
|
||||
DirectResize:
|
||||
size: (256, 128)
|
||||
interpolation: 3
|
||||
Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
model:
|
||||
name: "ft_net"
|
||||
ft_net:
|
||||
load_checkpoint: "/data/my_model_zoo/res50_market1501.pth"
|
||||
|
||||
extract:
|
||||
assemble: 1
|
||||
|
||||
extractor:
|
||||
name: "ReIDSeries"
|
||||
ReIDSeries:
|
||||
extract_features: ["output"]
|
||||
|
||||
splitter:
|
||||
name: "Identity"
|
||||
|
||||
aggregators:
|
||||
names: ["GAP"]
|
||||
|
||||
index:
|
||||
query_fea_dir: "/data/features/best_features/market/query"
|
||||
gallery_fea_dir: "/data/features/best_features/market/gallery"
|
||||
|
||||
feature_names: ['output']
|
||||
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "PCA", "L2Normalize"]
|
||||
PCA:
|
||||
proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done.
|
||||
whiten: False # whether do whiten when using PCA.
|
||||
train_fea_dir: "/data/features/best_features/market/gallery" # path of the features for training PCA.
|
||||
l2: True # whether do l2-normalization on the training features.
|
||||
|
||||
feature_enhancer:
|
||||
name: "Identity"
|
||||
|
||||
metric:
|
||||
name: "KNN"
|
||||
|
||||
re_ranker:
|
||||
name: "KReciprocal"
|
||||
KReciprocal:
|
||||
k1: 20 # hyper-parameter for calculating jaccard distance.
|
||||
k2: 6 # hyper-parameter for calculating local query expansion.
|
||||
lambda_value: 0.3 # hyper-parameter for calculating the final distance.
|
||||
|
||||
evaluate:
|
||||
evaluator:
|
||||
name: "ReIDOverAll"
|
||||
|
|
@ -0,0 +1,83 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn" # name of the collate_fn.
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder" # name of the folder.
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["ShorterResize", "CenterCrop", "ToCaffeTensor", "Normalize"] # names of transformers.
|
||||
ShorterResize:
|
||||
size: 256 # target size of the shorter edge.
|
||||
CenterCrop:
|
||||
size: 224 # target size of the crop img.
|
||||
Normalize:
|
||||
mean: [104, 116, 124]
|
||||
std: [1.0, 1.0, 1.0]
|
||||
|
||||
model:
|
||||
name: "vgg16" # name of the model.
|
||||
vgg16:
|
||||
load_checkpoint: "/data/places365_model/vgg16_hybrid1365.pt" # path of the model checkpoint, If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop). 0 means concat these features and 1 means sum these features.
|
||||
assemble: 0
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "VggSeries" # name of the extractor.
|
||||
VggSeries:
|
||||
extract_features: ["pool5"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["GAP"] # names of aggregators.
|
||||
|
||||
index:
|
||||
# path of the query set features and gallery set features.
|
||||
query_fea_dir: "/data/features/best_features/oxford/query"
|
||||
gallery_fea_dir: "/data/features/best_features/oxford/gallery"
|
||||
|
||||
# name of the features to be loaded. It should be "output feature map" + "_" + "aggregation".
|
||||
# If there are multiple elements in the list, they will be concatenated on the channel-wise.
|
||||
feature_names: ["pool5_GAP"]
|
||||
|
||||
# a list of dimension process functions.
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "SVD", "L2Normalize"]
|
||||
SVD:
|
||||
proj_dim: 511 # the dimension after reduction. If it is 0, then no reduction will be done.
|
||||
whiten: True # whether do whiten when using SVD.
|
||||
train_fea_dir: "/data/features/best_features/paris" # path of the features for training SVD.
|
||||
l2: True # whether do l2-normalization on the training features.
|
||||
|
||||
# function for enhancing the quality of features.
|
||||
feature_enhancer:
|
||||
name: "Identity" # name of the feature enhancer.
|
||||
|
||||
# function for calculating the distance between query features and gallery features.
|
||||
metric:
|
||||
name: "KNN" # name of the metric.
|
||||
|
||||
# function for re-ranking the results.
|
||||
re_ranker:
|
||||
name: "Identity" # name of the re-ranker.
|
||||
|
||||
evaluate:
|
||||
# function for evaluating results.
|
||||
evaluator:
|
||||
name: "OxfordOverAll" # name of the evaluator.
|
||||
|
|
@ -0,0 +1,69 @@
|
|||
datasets:
|
||||
batch_size: 16
|
||||
|
||||
collate_fn:
|
||||
name: "CollateFn"
|
||||
|
||||
folder:
|
||||
name: "Folder"
|
||||
|
||||
transformers:
|
||||
names: ["ShorterResize", "CenterCrop", "ToCaffeTensor", "Normalize"]
|
||||
ShorterResize:
|
||||
size: 256
|
||||
CenterCrop:
|
||||
size: 224
|
||||
Normalize:
|
||||
mean: [104, 116, 124]
|
||||
std: [1.0, 1.0, 1.0]
|
||||
|
||||
model:
|
||||
name: "vgg16"
|
||||
vgg16:
|
||||
load_checkpoint: "/data/places365_model/vgg16_hybrid1365.pt"
|
||||
|
||||
extract:
|
||||
assemble: 0
|
||||
|
||||
extractor:
|
||||
name: "VggSeries"
|
||||
VggSeries:
|
||||
extract_features: ["pool5"]
|
||||
|
||||
splitter:
|
||||
name: "Identity"
|
||||
|
||||
aggregators:
|
||||
names: ["GAP"]
|
||||
|
||||
index:
|
||||
query_fea_dir: "/data/features/best_features/oxford/query"
|
||||
gallery_fea_dir: "/data/features/best_features/oxford/gallery"
|
||||
|
||||
feature_names: ["pool5_GAP"]
|
||||
|
||||
dim_processors:
|
||||
names: ["L2Normalize", "SVD", "L2Normalize"]
|
||||
SVD:
|
||||
proj_dim: 511
|
||||
whiten: True
|
||||
train_fea_dir: "/data/features/best_features/paris"
|
||||
l2: True
|
||||
|
||||
feature_enhancer:
|
||||
name: "Identity"
|
||||
|
||||
metric:
|
||||
name: "KNN"
|
||||
|
||||
re_ranker:
|
||||
name: "KReciprocal"
|
||||
KReciprocal:
|
||||
k1: 20 # hyper-parameter for calculating jaccard distance.
|
||||
k2: 6 # hyper-parameter for calculating local query expansion.
|
||||
lambda_value: 0.3 # hyper-parameter for calculating the final distance.
|
||||
|
||||
evaluate:
|
||||
evaluator:
|
||||
name: "OxfordOverAll"
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
# retrieval settings
|
||||
|
||||
datasets:
|
||||
# number of images in a batch.
|
||||
batch_size: 16
|
||||
|
||||
# function for stacking images in a batch.
|
||||
collate_fn:
|
||||
name: "CollateFn" # name of the collate_fn.
|
||||
|
||||
# function for loading images.
|
||||
folder:
|
||||
name: "Folder" # name of the folder.
|
||||
|
||||
# a list of data augmentation functions.
|
||||
transformers:
|
||||
names: ["ShorterResize", "CenterCrop", "ToCaffeTensor", "Normalize"] # names of transformers.
|
||||
ShorterResize:
|
||||
size: 256 # target size of the shorter edge.
|
||||
CenterCrop:
|
||||
size: 224 # target size of the crop img.
|
||||
Normalize:
|
||||
mean: [104, 116, 124]
|
||||
std: [1.0, 1.0, 1.0]
|
||||
|
||||
model:
|
||||
name: "vgg16" # name of the model.
|
||||
vgg16:
|
||||
load_checkpoint: "/data/places365_model/vgg16_hybrid1365.pt" # path of the model checkpoint, If it is started with "torchvision://", the model will be loaded from torchvision.
|
||||
|
||||
extract:
|
||||
# way to assemble features if transformers produce multiple images (e.g. TwoFlip, TenCrop). 0 means concat these features and 1 means sum these features.
|
||||
assemble: 0
|
||||
|
||||
# function for assigning output features.
|
||||
extractor:
|
||||
name: "VggSeries" # name of the extractor.
|
||||
VggSeries:
|
||||
extract_features: ["pool5"] # name of the output feature map. If it is ["all"], then all available features will be output.
|
||||
|
||||
# function for splitting the output features (e.g. PCB).
|
||||
splitter:
|
||||
name: "Identity" # name of the function for splitting features.
|
||||
|
||||
# a list of pooling functions.
|
||||
aggregators:
|
||||
names: ["GAP"] # names of aggregators.
|
||||
|
Loading…
Reference in New Issue