# -*- coding: utf-8 -*- import torch from ..aggregators_base import AggregatorBase from ...registry import AGGREGATORS from typing import Dict @AGGREGATORS.register class GAP(AggregatorBase): """ Global average pooling. """ default_hyper_params = dict() def __init__(self, hps: Dict or None = None): """ Args: hps (dict): default hyper parameters in a dict (keys, values). """ self.first_show = True super(GAP, self).__init__(hps) def __call__(self, features: Dict[str, torch.tensor]) -> Dict[str, torch.tensor]: ret = dict() for key in features: fea = features[key] if fea.ndimension() == 4: fea = fea.mean(dim=3).mean(dim=2) ret[key + "_{}".format(self.__class__.__name__)] = fea else: # In case of fc feature. assert fea.ndimension() == 2 if self.first_show: print("[GAP Aggregator]: find 2-dimension feature map, skip aggregation") self.first_show = False ret[key] = fea return ret