# -*- coding: utf-8 -*- import os import argparse import importlib from pyretri.config import get_defaults_cfg from pyretri.datasets import build_folder, build_loader from pyretri.models import build_model from pyretri.extract import build_extract_helper def load_datasets(): data_json_dir = "/home/songrenjie/projects/RetrievalToolBox/new_data_jsons/" datasets = { "oxford_gallery": os.path.join(data_json_dir, "oxford_gallery.json"), "oxford_query": os.path.join(data_json_dir, "oxford_query.json"), "cub_gallery": os.path.join(data_json_dir, "cub_gallery.json"), "cub_query": os.path.join(data_json_dir, "cub_query.json"), "indoor_gallery": os.path.join(data_json_dir, "indoor_gallery.json"), "indoor_query": os.path.join(data_json_dir, "indoor_query.json"), "caltech_gallery": os.path.join(data_json_dir, "caltech_gallery.json"), "caltech_query": os.path.join(data_json_dir, "caltech_query.json"), "paris_all": os.path.join(data_json_dir, "paris.json"), } for data_path in datasets.values(): assert os.path.exists(data_path), "non-exist dataset path {}".format(data_path) return datasets def parse_args(): parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval') parser.add_argument('opts', default=None, nargs=argparse.REMAINDER) parser.add_argument('--save_path', '-sp', default=None, type=str, help="save path for feature") parser.add_argument("--search_modules", "-sm", default=None, type=str, help="name of search module's directory") args = parser.parse_args() return args def main(): # init args args = parse_args() assert args.save_path is not None, 'the save path must be provided!' assert args.search_modules is not None, 'the search modules must be provided!' # init retrieval pipeline settings cfg = get_defaults_cfg() # load search space datasets = load_datasets() pre_processes = importlib.import_module("{}.pre_process_dict".format(args.search_modules)).pre_processes models = importlib.import_module("{}.extract_dict".format(args.search_modules)).models extracts = importlib.import_module("{}.extract_dict".format(args.search_modules)).extracts # search in an exhaustive way for data_name, data_args in datasets.items(): for pre_proc_name, pre_proc_args in pre_processes.items(): for model_name, model_args in models.items(): feature_full_name = data_name + "_" + pre_proc_name + "_" + model_name print(feature_full_name) if os.path.exists(os.path.join(args.save_path, feature_full_name)): print("[Search Extract]: config exists...") continue # load retrieval pipeline settings cfg.datasets.merge_from_other_cfg(pre_proc_args) cfg.model.merge_from_other_cfg(model_args) cfg.extract.merge_from_other_cfg(extracts[model_name]) # build dataset and dataloader dataset = build_folder(data_args, cfg.datasets) dataloader = build_loader(dataset, cfg.datasets) # build model model = build_model(cfg.model) # build helper and extract features extract_helper = build_extract_helper(model, cfg.extract) extract_helper.do_extract(dataloader, save_path=os.path.join(args.save_path, feature_full_name)) if __name__ == '__main__': main()