datasets: batch_size: 16 collate_fn: name: "CollateFn" folder: name: "Folder" transformers: names: ["DirectResize", "TwoFlip", "ToTensor", "Normalize"] DirectResize: size: (256, 128) interpolation: 3 Normalize: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] model: name: "ft_net" ft_net: load_checkpoint: "/data/my_model_zoo/res50_market1501.pth" extract: assemble: 1 extractor: name: "ReIDSeries" ReIDSeries: extract_features: ["output"] splitter: name: "Identity" aggregators: names: ["GAP"] index: query_fea_dir: "/data/features/best_features/market/query" gallery_fea_dir: "/data/features/best_features/market/gallery" feature_names: ['output'] dim_processors: names: ["L2Normalize", "PCA", "L2Normalize"] PCA: proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done. whiten: False # whether do whiten when using PCA. train_fea_dir: "/data/features/best_features/market/gallery" # path of the features for training PCA. l2: True # whether do l2-normalization on the training features. feature_enhancer: name: "Identity" metric: name: "KNN" re_ranker: name: "KReciprocal" KReciprocal: k1: 20 # hyper-parameter for calculating jaccard distance. k2: 6 # hyper-parameter for calculating local query expansion. lambda_value: 0.3 # hyper-parameter for calculating the final distance. evaluate: evaluator: name: "ReIDOverAll"